Vitamin D-Co-Faktor: Magnesium

Magnesium – die wichtigsten Informationen zum Vitamin D-Co-Faktor!

Magnesium ist zweifelsohne eines der wichtigsten Mineralien und für über 800 enzymatische Reaktionen im Körper zuständig. Bekannt ist das Supermineral für seine muskelentspannende Wirkung, die sich sowohl an den Skelettmuskeln, als auch am Herzmuskel positiv auswirkt. Darüber hinaus sind aber auch viele andere biochemische Prozesse von einer ausreichenden Magnesiumversorgung abhängig. So braucht Vitamin D zwingend u.a. Magnesium für seine Aktivierung. Mit einer erhöhten Vitamin D-Versorgung, sollte daher unbedingt eine ausreichende Aufnahme von Magnesium einhergehen.

 

Der Artikel in Kürze zum Anklicken:

› Das Zusammenspiel mit Vitamin D

› Wie sieht es mit der Magnesiumversorgung aus?

› Die breite Palette an Anwendungsmöglichkeiten von Magnesium ist enorm

› So optimieren Sie Ihre Magnesiumzufuhr

› Welche Magnesiumpräparate schaffen Abhilfe?

 


Das Zusammenspiel von Magnesium mit Vitamin D

 

  • Vitamin D-Umwandlungsprozesse und Aktivierung abhängig von Magnesium 

Damit Vitamin D3 (Cholecalciferol), das durch UVB-Strahlung auf der Haut entsteht und in 25-Hydroxy-Vitamin D3 und anschließend in die aktive Form 1,25-Dihydroxy-Vitamin-D3 umgewandelt werden kann, ist jeweils Magnesium notwendig. Dabei wird der essentielle Mineralstoff verbraucht und steht dadurch für andere Prozesse im Körper nicht mehr zur Verfügung (siehe Schaubild 1 unten), (Deng, X. et al., 2013).

Schaubild 1: Umwandlungsprozesse von Vitamin D abhängig von Magnesium

 

  • Vitamin D-Mangel = Magnesiummangel

Vitamin D-Mangel führt durch die verschlechterte Aufnahme von Magnesium ohnehin zu einem Mangel des Mineralstoffes.  Durch die oben beschriebenen Umwandlungsprozesse, wird dieser bei erhöhter Gabe von Vitamin D weiter potenziert.

Durch einen Vitamin D-Mangel kann der Körper auch nicht mehr ausreichend Kalzium aus dem Darm aufnehmen, es kommt daher zu einem Kalziumabfall im Blut. Darauf reagieren die Nebenschilddrüsen mit einer erhöhten Ausschüttung Parathormon (PTH), was neben einer Freisetzung von Kalzium aus den Knochen wiederum eine Verminderung der Kalziumausscheidung über die Nieren bewirkt. Im Gegenzug wird die Phosphatausscheidung über die Nieren erhöht, was aber auch gleichzeitig eine erhöhte Ausscheidung von Magnesium zu Folge hat (siehe Schaubild 2 unten).

  • Vitamin D fördert die Aufnahme von Magnesium

Immerhin ca. 10% der Magnesiumaufnahme ist von einem ausreichenden Vitamin D-Spiegel abhängig. Ein Vitamin D-Mangel erschwert damit eine adäquate Grundversorgung mit Magnesium (siehe Schaubild 2 unten).

Schaubild 2: Zusammenhang Magnesium und Vitamin D

 


Magnesiumversorgung – wieviel brauchen wir?

In seinem Informationsvideo (siehe unten) bezieht sich Dr. med Edalatpour auf die Aussagen von Dr. Norman Shealy, der für einen gesunden nicht besonders beanspruchten Körper mindestens 700mg Magnesium Tagesdosis empfiehlt. Dies kann entweder durch bioverfügbare Supplementierung und teilweise auch über die Nahrung erreicht werden. Es sei allerdings gesagt, dass ein Großteil der Bevölkerung diesen Wert ohne bioverfügbare Nahrungsergänzung kaum erreichen kann.

Offizielle Zahlen gehen von einem Magnesiummangel bei ca. 33% der Bevölkerung in Deutschland und 48%  in den USA aus (Schimatschek & Rempis, 2001; Rosanoff, Weaver & Rude, 2012), wobei hier anzumerken ist, dass dabei lediglich der Anteil im Blut ermittelt wird. Die tatsächlichen Zahlen dürften weit höher liegen. Warum das so ist, lesen Sie im folgenden Absatz:

Magnesium befindet sich nur zu 1% im Blut und zu 99% in den Zellen gespeichert. Weil sich der Körper bei Mangel das Magnesium aus den Organen, Knochen und Geweben zieht um den Blutspiegel aufrecht zu erhalten, kann mit dieser Methode also nur eine ausgeprägte Unterversorgung festgestellt werden. Ein niedriger Mg-Spiegel stimuliert nämlich die Ausschüttung von PTH (Parathormon), das Kalzium aus Knochen, Niere und Darm freisetzt und somit den Kalziumspiegel im Blutserum auf Stand hält, während die Zellen aber längst einer Magnesiumunterversorgung ausgesetzt sind (Medalle, Waterhouse & Hahn, 1976) . Liegt der Blutserumspiegel aber unter 0,85 mmol/l, kann auf jeden Fall von einem zellulären Mg-Mangel ausgegangen werden.


Die breite Palette an Anwendungsmöglichkeiten von Magnesium sind enorm

Unabhängig vom Vitamin D deckt es eine breite Palette an medizinischen Einsatzmöglichkeiten ab und findet Anwendung bei folgenden Krankheitsbildern bzw. biologischen Vorgängen:

  • bei Herzrhythmusstörungen
  • bei Muskelkrämpfen
  • wirkt antidepressiv
  • bei Migräne
  • Insulinwirkung: ohne Mg kann das Insulin keinen Zucker in die Zelle befördern, Mg ist außerdem an der Umsetzung von Zucker in Energie beteiligt
  • Fettverbrennung
  • bei Störungen der Mitochondrien
  • hilft in der Leber bei Entgiftung
  • Schmerzreduktion: z.B. bei postoperativen Eingriffen
  • Förderung der Darmtätigkeit: kann Verstopfungen vorbeugen oder auflösen
  • positiver Einfluss auf die Wundheilung
  • positiver Einfluss auf die Entzündungshemmung

 

Magnesiummangelsymptome

  • Schlafstörung, Nervosität, Angst und depressive Störungen
  • Müdigkeit / Erschöpfung
  • Reizdarmsymptome
  • Kopfschmerzen / Regelschmerzen
  • Krämpfe
  • gestörte Nervenfunktion
  • fehlende Vitamin D-Hormonwirkung
  • zu wenig ATP (Adenosintriphosphat) = Leistungsschwäche

Quellen s. u. : Nielsen, Johnson & Zeng, 2010; Bucher, 1991; Köseoglu et al., 2008; Barragan-Rodríguez, Rodríguez-Morán & Guerrero-Romero, 2007

 

erhöhter Magnesiumbedarf besteht bei:

  • sportlicher Aktivität
  • Stress
  • geringer Schlafdauer
  • falscher Ernährung: besonders viel grünes Gemüse von Vorteil
  • Medikamenteneinnahme (insbesondere bei harntreibenden Medikamenten)
  • chronischen Infekten und Entzündungen
  • nach Operationen

So optimieren Sie Ihre Zufuhr

Über die Nahrung

Durch Überzüchtung und Überdüngung der Böden enthalten unsere heute verfügbaren Lebensmittel nicht mehr die hohen Mineralstoffanteile wie das früher einmal der Fall war. Das gilt natürlich auch für Magnesium. Eine zusätzliche Zuführung des Minerals durch bioverfügbare Supplemente ist daher empfehlenswert. Trotzdem gibt es einige Perlen, die in Bezug auf den Magnesiumanteil im Vergleich zu anderen Lebensmittel besonders herausragen.

Lebensmittel mit hohem Magnesiumanteil

Hier haben wir einige herausragende Magnesiumlieferanten aufgeführt:

  • Obst: Bananen, Beeren, Kiwi, Ananas, Orange
  • grünes Gemüse: Grünkohl, Brokkoli, Fenchel, Artischocken, Erbsen, Spinat, Rosenkohl
  • Kerne und Nüsse: Sonnenblumenkerne, Kürbiskerne, Cashewkerne, Pinienkerne, Mandeln, Erdnüsse

 

 

Auf diese Nahrung sollten Sie möglichst verzichten

Grundsätzlich gilt es den Verzehr von tierischen und industriell verarbeiteten Lebensmittel zu reduzieren – im besten Fall auf letzteres zu verzichten.

Milchprodukte enthalten viele Phosphate, welche die Nebenschilddrüsen anregen Parathormon (PTH) auszuschütten → das wiederum setzt Kalzium und Magnesium aus Knochen und Zähnen frei, bis der Blutspiegel wieder hergestellt wird → fördert Zahn- und Knochenabbau

Fleisch & Fleischprodukte: Tiere aus konventioneller Haltung bekommen meistens stark verarbeitetes Futter, welches im Gegensatz zu Gras sehr wenig Magnesium aufweist. Entsprechend niedrig ist auch der Gehalt an Magnesium in deren Fleisch.

Weißmehl: je stärker Mehl raffiniert wird, desto mehr Mineralstoffe und somit auch Magnesium gehen bei der Verarbeitung verloren.

 

Welche Präparate schaffen Abhilfe?

Magnesium kann oral über Kapseln, Tabletten, Pulver oder Lösungen zugeführt werden und ist in verschiedenen Verbindungen auf dem Markt erhältlich. Hier die Top 3 Empfehlungen von Dr. med. Edalatpour:

  • Trimagnesiumdicitrat: höchster Magnesiumanteil, kann aber Histamin freisetzen
  • Magnesiumglycinat: sehr gut verträglich, höchste Bioverfügbarkeit
  • Magnesiummalat: ebenfalls sehr gut verträglich

Hinzu kommt:

  • Magnesiumthreonat, welches die Bluthirnschranke gut passieren kann und gerade bei kognitiven Störungen zum Einsatz kommt

Beachtet werden sollte dabei, dass die Dosis über den Tag verteilt eingenommen wird, da die orale Aufnahmefähigkeit limitiert ist. Außerdem kann eine Überdosis zu Durchfall führen. Es wird daher geraten die Dosierung anfangs langsam zu steigern.

Eine weitere preiswerte, effiziente und ungefährliche Art den Körper mit Magnesium zu versorgen ist die transdermale Zuführung über die Haut (Chandrasekaran, 2016). Hierzu bieten sich folgende Möglichkeiten an:

  • Magnesium-Öl (ca. 33 g Magnesiumchlorid auf 100 ml Wasser)
  •  Magnesiumfußbad (3-10EL Magnesiumchlorid)
  •  Magnesiumvollbad (300-1000 g Magnesiumchloid)

alle 3 Anwendungen sollten mindestens 45 min angewendet werden.


Und hier die  Informationsvideos von Dr. med. Edalatpour:

https://www.youtube.com/watch?v=vzmB7WDZFx8

https://www.youtube.com/watch?v=cQNp6pl4na8


Wir bedanken uns herzlich bei Dr. Edalatpour, Frau Nicole Kreft, Michael Siebentritt, Gerhard Moser, Dr. Bruno Kugel und allen Beteiligten für die Zurverfügungsstellung derer Inhalte!


Studien

Deng X., Song Y., Manson J. E., Signorello L. B., Zhang S. M., Shrubsole M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: Results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Medicine, 11(1). doi:10.1186/1741-7015-11-187

Schimatschek, H. F. & Rempis, R. (2001). Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnesium research: official organ of the International Society for the Development of Research on Magnesium, 14. Jg., Nr. 4, S. 283-290.

Rosanoff, A., Weaver, C.M. & Rude, R.K. (2012). “Suboptimal magnesium status in the United States: are the health consequences underestimated?.” Nutrition reviews 70.3: 153-164.

Nielsen FH, Johnson LK, Zeng H.(2010) Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnesium Research. 2010;23:158-168. 2) Held K et al. Oral Mg(2+) Supplementation Reverses Age-Related Neuroendocrine and Sleep. EEG Changes in Humans. Pharmacopsychiatry. 2002;35:135-143.  

Bucher SF. Erfahrungen mit Magnesium bei der Behandlung von funktionellen Störungen. Schweizerische Zeitschrift für Ganzheitsmedizin. 1991;2:1-4.  

Köseoglu E et al. The effects of magnesium prophylaxis in migraine without aura. Magnesium Research. 2008;21:101-108.

Barragan-Rodríguez L., Rodríguez-Morán M., & Guerrero-Romero F. (2007). Depressive Symptoms and Hypomagnesemia in Older Diabetic Subjects. Archives of Medical Research, 38(7), 752-756. doi:10.1016/j.arcmed.2007.03.008

Medalle R., Waterhouse, C., & Hahn, T. J. (1976). Vitamin D resistance in magnesium deficiency. The American Journal of Clinical Nutrition, 29(8), 854-858. doi:10.1093/ajcn/29.8.854

Magnesium – der Vitamin D-Aktivator

Magnesium – der Vitamin D-Aktivator

Warum Sie während einer Vitamin D-Einnahme auch Magnesium zu sich nehmen sollten!

Magnesium ist zweifelsohne eines der wichtigsten Mineralien und für über 800 enzymatische Reaktionen im Körper zuständig. So braucht insbesondere Vitamin D den Mineralstoff um aktiviert zu werden. Mit einer erhöhten Vitamin D-Versorgung sollte daher unbedingt eine ausreichende Aufnahme von Magnesium einhergehen, um dessen Wirkung vollständig zu entfalten.

Darüber hinaus sind aber auch viele andere biochemische Prozesse von einer ausreichenden Magnesiumversorgung abhängig. Darüber berichten wir im aktuellen Newsfeed, der sich der beiden weiter unten eingebetteten Informationsvideos von Dr. med. Edalatpour als Grundlage bedient.


Das Zusammenspiel von Magnesium mit Vitamin D

  • Vitamin D-Umwandlungsprozesse und Aktivierung abhängig von Magnesium 

Damit Vitamin D3 in die aktive Form 1,25-Dihydroxy-Vitamin-D3 umgewandelt werden kann, ist Magnesium notwendig. Dabei wird der essentielle Mineralstoff verbraucht und steht dadurch für andere Prozesse im Körper nicht mehr zur Verfügung (siehe Schaubild 1 unten).

Schaubild 1: Umwandlungsprozesse von Vitamin D abhängig von Magnesium

 

  • Vitamin D-Mangel = Magnesiummangel

Durch einen Vitamin D-Mangel kann der Körper auch nicht mehr ausreichend Kalzium aus dem Darm aufnehmen, es kommt daher zu einem Kalziumabfall im Blut. Darauf reagieren die Nebenschilddrüsen mit einer erhöhten Ausschüttung Parathormon (PTH), was neben einer Freisetzung von Kalzium aus den Knochen wiederum eine Verminderung der Kalziumausscheidung über die Nieren bewirkt. Im Gegenzug wird die Phosphatausscheidung über die Nieren erhöht, was aber auch gleichzeitig eine erhöhte Ausscheidung von Magnesium zu Folge hat (siehe Schaubild 2 unten).

 

  • Vitamin D fördert die Aufnahme von Magnesium

Auf der anderen Seite ist ca. 10% der Magnesiumaufnahme von einem ausreichenden Vitamin D-Spiegel abhängig. Ein Vitamin D-Mangel erschwert damit eine adäquate Grundversorgung mit Magnesium (siehe Schaubild 2 unten).

Schaubild 2: Zusammenhang Magnsium und Vitamin D

 


Magnesiumversorgung – wieviel brauchen wir?

In seinem Informationsvideo bezieht sich Dr. med Edalatpour auf die Aussagen von Dr. Norman Shealy, der für einen gesunden nicht besonders beanspruchten Körper, mindestens 700mg Magnesium Tagesdosis empfiehlt. Dies kann entweder durch bioverfügbare Supplementierung und teilweise auch über die Nahrung erreicht werden. Es sei allerdings gesagt, dass ein Großteil der Bevölkerung diesen Wert ohne bioverfügbare Nahrungsergänzung kaum erreichen kann.

Offizielle Zahlen gehen von einem Magnesiummangel bei ca. 33% der Bevölkerung in Deutschland und 48%  in den USA aus (Schimatschek & Rempis, 2001; Rosanoff, Weaver & Rude, 2012), wobei hier anzumerken ist, dass dabei lediglich der Anteil im Blut ermittelt wird. Die tatsächlichen Zahlen dürften weit höher liegen. Warum das so ist, lesen Sie im folgenden Absatz:

Magnesium befindet sich nur zu 1% im Blut und wird zu 99% in den Zellen gespeichert. Weil sich der Körper bei Mangel das Magnesium aus den Organen, Knochen und Geweben zieht um den Blutspiegel aufrecht zu erhalten, kann mit dieser Methode also nur eine ausgeprägte Unterversorgung festgestellt werden. Ein niedriger Mg-Spiegel stimuliert nämlich die Ausschüttung von PTH (Parathormon), das Kalzium aus Knochen, Niere und Darm freisetzt und somit den Kalziumspiegel im Blutserum auf dem Sollstand hält, während die Zellen aber längst einer Magnesiumunterversorgung ausgesetzt sind (Medalle, Waterhouse & Hahn, 1976) . Liegt der Blutserumspiegel unter 0,85 mmol/l, kann auf jeden Fall von einem zellulären Mg-Mangel ausgegangen werden.


Die breite Palette an Anwendungsmöglichkeiten von Magnesium sind enorm!

Abgesehen von der Aktivierung des Vitamin D, deckt Magnsium eine breite Palette an medizinischen Einsatzmöglichkeiten ab und findet u.a. Anwendung bei folgenden Krankheitsbildern bzw. biologischen Vorgängen:

  • bei Herzrhythmusstörungen
  • bei Muskelkrämpfen
  • wirkt antidepressiv
  • bei Migräne
  • Insulinwirkung: ohne Mg kann das Insulin keinen Zucker in die Zelle befördern, Mg ist außerdem an der Umsetzung von Zucker in Energie beteiligt
  • Fettverbrennung
  • Störungen der Mitochondrien
  • hilft in der Leber bei Entgiftung
  • Schmerzreduktion: z.B. bei postoperativen Eingriffen
  • Förderung der Darmtätigkeit: kann Verstopfungen vorbeugen oder auflösen
  • positiver Einfluss auf die Wundheilung
  • positiver Einfluss auf die Entzündungshemmung

 

Magnesiummangelsymptome

  • Schlafstörung, Nervosität, Angst und depressive Störungen
  • Müdigkeit / Erschöpfung
  • Reizdarmsymptome
  • Kopfschmerzen / Regelschmerzen
  • Krämpfe
  • gestörte Nervenfunktion
  • fehlende Vitamin D-Hormonwirkung
  • zu wenig ATP (Adenosintriphosphat) = Leistungsschwäche

 

erhöhter Magnesiumbedarf besteht bei:

  • sportlicher Aktivität
  • Stress
  • geringer Schlafdauer
  • falscher Ernährung: besonders viel grünes Gemüse dient zur Aufrechterhaltung eines adäquaten Magensiuumspiegels
  • Medikamenteneinnahme (insbesondere bei harntreibenden Medikamenten)
  • chronischen Infekte und Entzündungen
  • nach Operationen

Klicken Sie hier um unseren ganzen Artikel über Magnesium zu lesen!

 

Und hier die Informationsvideos von Dr. med. Edalatpour:

https://www.youtube.com/watch?v=vzmB7WDZFx8

 

https://www.youtube.com/watch?v=cQNp6pl4na8


Wir bedanken uns herzlich bei Dr. Edalatpour, Frau Nicole Kreft, Michael Siebentritt, Gerhard Moser Dr. Bruno Kugel und allen Beteiligten für das Zurverfügungstellen der Inhalte!


Quellen:

Schimatschek, H. F. & Rempis, R. (2001). Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnesium research: official organ of the International Society for the Development of Research on Magnesium, 14. Jg., Nr. 4, S. 283-290.

Medalle R., Waterhouse, C., & Hahn, T. J. (1976). Vitamin D resistance in magnesium deficiency. The American Journal of Clinical Nutrition, 29(8), 854-858. doi:10.1093/ajcn/29.8.854

FAQ – Hier beantworten wir die häufigsten Fragen rund um Vitamin D

An dieser Stelle beantworten wir kurz und knapp Ihre brennendsten Fragen rund um die Themen Vitamin D und Sonne. Klicken Sie einfach auf die Frage um zur Antwort zu gelangen.

 

Thema Vitamin D-Mangel

> Wie hoch ist der optimale Vitamin D-Spiegel und ab wann spricht man von einem Mangel?

> Woher weiß ich, ob ich einen Vitamin D-Mangel habe?

> Wie wird der Vitamin D-Spiegel gemessen und was genau wird gemessen?

> Welche Risikogruppen für eine Vitamin D-Unterversorgung gibt es?

> Wie kann ich meinen Vitamin D-Mangel ausgleichen?

> Kann ich meinen Vitamin D-Bedarf über die Ernährung abdecken?

> Wie kann ich meinen Vitamin D-Spiegel im Winter aufrechterhalten?

 

Thema Sonne und Solarium

> Wann ist die Bildung von Vitamin D in der Sonne möglich?

> Kann man auch im Schatten oder bei Nutzung von Sonnencreme Vitamin D produzieren?

> Wie schütze ich mich am besten vor Sonnenbrand?

> Wie schütze ich mich am besten vor Hautkrebs?

> Ich nehme Medikamente ein. Darf ich mich sonnen?

> Kann man beim Sonnen im Solarium Vitamin D bilden?

> Kann man mit Tageslichtlampen Vitamin D produzieren?

 

Thema Vitamin D-Einnahme

> Wie viel Vitamin D soll ich einnehmen?

> Bioverfügbarkeit: Wie kann ich die Aufnahme von Vitamin D-Supplementen optimieren?

> In welcher Form sollte Vitamin D am besten eingenommen werden?

> Wie häufig sollte ich Vitamin D einnehmen? Ist einmal pro Woche ausreichend?

> Kann Vitamin D toxisch wirken?

> Wann sollte Vitamin D nicht oder nur mit Vorsicht eingenommen werden?

> Reagiert jeder Mensch gleich auf Vitamin D?

› Vitamin D-Co-Faktoren: Warum werden Vitamin D-Präparate oftmals zusammen mit Vitamin K2 angeboten?

> Vitamin D-Co-Faktoren: Muss ich bei einer Vitamin D-Supplementation Magnesium begleitend einnehmen?

> Ist es vorteilhaft Vitamin D mit Kalzium zu kombinieren?

> Sollen schwangere Frauen Vitamin D einnehmen und wenn ja wie viel?

> Dürfen Kinder Vitamin D nehmen?

> Gibt es tatsächlich – wie einige Akteure behaupten – zahlreiche Studien, die belegen, dass Vitamin D wirkungslos ist?

 

Das Projekt SonnenAllianz

> Was sind die Ziele der SonnenAllianz?

> Wie kann ich das Projekt SonnenAllianz unterstützen?

 


Zu den Antworten:

Thema Vitamin D-Mangel

  • Wie hoch ist der optimale Vitamin D-Spiegel und ab wann spricht man von einem Mangel?

Der optimale Vitamin D-Spiegel befindet sich im Bereich zwischen 40-60 ng/ml. Von einem Defizit spricht man in der aktuellen Vitamin D-Forschung bei einem Spiegel von unter 30 ng/ml, von einem Mangel bei weniger als 20 ng/ml.

Achtung bei den Einheiten: Einige Labore geben die Messwerte in nmol/l an. Die geläufigere und von uns primär verwendete Bezeichnung ist aber ng/ml. Zum Umrechnen können die nmol/l-Werte mit dem Divisor von 2,5 dividiert werden um auf die entsprechenden ng/ml-Werte zu kommen.

Zum Bsp.: 100 nmol/l : 2,5 = 40 ng/ml

Um mehr über den optimalen Vitamin D-Spiegel zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Woher weiß ich, ob ich einen Vitamin D-Mangel habe?

Da Vitamin D mit nahezu allen Körperzellen interagiert, sind die Symptome und Folgeerscheinungen dermaßen vielfältig, dass es kaum möglich ist diese auf ein paar wenige Indikationen wie Antriebslosigkeit oder Müdigkeit einzuschränken. 

Die sicherste, kostengünstigste und gängigste Methode seinen Vitamin D-Spiegel zu ermitteln, ist die Messung der zirkulierenden 25(OH)D-Konzentration im Blut. Werte von unter 30 ng/ml (= 75 nmol/l) gelten dabei als Vitamin D-Mangel. Im optimalen Bereich befinden Sie sich bei Werten zwischen 40 und 60 ng/ml.

Um mehr über Vitamin D-Mangel zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Wie wird der Vitamin D-Spiegel gemessen und was genau wird gemessen? 

Die sicherste, kostengünstigste und gängigste Methode seinen Vitamin D-Spiegel zu ermitteln, ist die Messung des im Blut zirkulierenden 25-Hydroxycolecalciferol auch Calcidiol oder kurz 25(OH)D, genannt. Diese Zwischenstufe des Vitamin D wird in der Leber gebildet und ist auch als Speicher-Vitamin D bekannt. 

Erst in den Nieren, dem Gewebe und den Zellen wird Vitamin D in seine aktive Form (1,25-(OH)2 D3) konvertiert, dessen Messung allerdings nur sehr schwer analysierbar und daher aufwändiger und weniger zuverlässig ist. 

Es gibt 2 verschiedene Einheiten die beide die Konzentration des 25(OH)D im Blut angeben, nämlich ng/ml und nmol/l (1 ng/ml = 2,5 nmol/l).

↑ zurück zur Übersicht

 

  • Welche Risikogruppen für eine Vitamin D-Unterversorgung gibt es? 

Generell: praktisch alle Menschen in Deutschland, die im Winter nicht regelmäßig südlichere Gebiete aufsuchen, Solarien (mit UV-B-Anteil in der Strahlung) nutzen oder Vitamin D als Nahrungsergänzung supplementieren. Das Robert-Koch-Institut veröffentlichte 2015 die größte bis zu diesem Zeitpunkt durchgeführte Studie, wonach 88% der deutschen Bevölkerung in Deutschland von einem Vitamin D-Mangel betroffen waren.

Besonders gefährdete Risikogruppen: 

Kinder werden oftmals von der Sonne ferngehalten und zu ausgiebig mit chemischen Sonnenblockern geschützt.

Alte Menschen, die sich wenig bis gar nicht in der Sonne aufhalten. Zudem nimmt die Fähigkeit Vitamin D auf der Haut zu synthetisieren im Laufe des Alterns ab. 

Bettlägerige Menschen können im Bett kein Vitamin D durch Sonnenstrahlen synthetisieren. 

Schwangere haben einen deutlich höheren Vitamin D-Bedarf da zwei Organismen versorgt werden müssen.

↑ zurück zur Übersicht

 

  • Wie kann ich meinen Vitamin D-Mangel ausgleichen?

Es gibt verschiedene Möglichkeiten, wie Sie Ihren Körper mit Vitamin D versorgen können:

  • In Deutschland kann Ihre Haut von April bis September in der Mittagssonne max. zwischen 11 und 15 Uhr (nur im Hochsommer) Vitamin D bilden. Sonnen Sie sich täglich 10-20 Minuten (zumindest Arme und Beine) ohne Sonnenschutz. Je heller Ihr Hauttyp, desto weniger Sonnenzeit benötigen Sie. Im Winter ermöglicht nur ein Urlaub in geeigneten Breitengraden eine Vitamin D-Bildung per Sonnenbad. Beachten Sie unsere Tipps zum Sonnen!
  • Nehmen Sie Vitamin D als Nahrungsergänzungsmittel ein. Mit unserem kostenlosen Vitamin D-Bedarfsrechner können Sie Ihren persönlichen Vitamin D-Bedarf sehr einfach ermitteln. Klicken Sie hier, um direkt zum Bedarfsrechner weitergeleitet zu werden!
  • Nutzen Sie ein Solarium mit UV-B-Strahlen (nach Bestimmung Ihres Hauttyps und der richtigen Dosierung). Lassen Sie sich dabei unbedingt von ausgebildetem Fachpersonal beraten und achten Sie auf ein qualitativ hochwertiges Solarium.

↑ zurück zur Übersicht

 

  • Kann ich meinen Vitamin D-Bedarf über die Ernährung abdecken?

Alleine über die Ernährung ist eine ausreichende Aufnahme von Vitamin D (abgesehen von Extremdiäten wie z.B. bei den Eskimos, die in hohem Maße Fisch und Lebertran konsumieren) nicht zu erreichen.

Um 4000 I.E. Vitamin D über die Nahrung  zu sich zu nehmen, müssten Sie täglich 80 Eier, 400 g Hering, 5 kg Rinderleber, 3 kg Pilze oder 10 kg Käse essen!

Um zu erfahren, wie Sie stattdessen einen ausreichenden Vitamin D-Spiegel erreichen können, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Wie kann ich meinen Vitamin D-Spiegel im Winter aufrechterhalten?

Es gibt verschiedene Möglichkeiten, wie Sie Ihren Körper im Winter mit Vitamin D versorgen können:

↑ zurück zur Übersicht

 

Thema Sonne und Solarium

  • Wann ist die Bildung von Vitamin D in der Sonne möglich?

In Deutschland ist die Vitamin D-Bildung in der Sonne lediglich von April bis September maximal in dem Zeitfenster von 11 und 15 Uhr (Hochsommer) bei wolkenfreiem Himmel möglich. Je weiter man sich auf der Zeitachse vom Sonnenhöchststand (21. Juni) entfernt, desto geringer wird dieses Zeitfenster sowie die Intensität der durchdringenden Strahlung und schließt sich Mitte Oktober bzw. Ende März.

Sonnen Sie sich täglich 10-20 Minuten (zumindest Arme und Beine) ohne Sonnenschutz. Je heller Ihr Hauttyp, desto weniger Sonnenzeit benötigen Sie. Ein Sonnenbrand muss unbedingt vermieden werden! Hier erhalten Sie Tipps zum Sonnen in der Sonne.

Im Winter kann in unseren Breitengraden kein Vitamin D über die Haut produziert werden, da die dafür benötigten UV-B-Strahlen in dieser Jahreszeit von der Atmosphäre absorbiert werden und unsere Haut nicht erreichen. Die Faustregel lautet: Nur wenn mein Schatten kürzer ist als meine Körpergröße, kann Vitamin D über die Haut gebildet werden. 

Um mehr über die Vitamin D-Bildung in der Sonne zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Kann man auch im Schatten oder bei Nutzung von Sonnencreme Vitamin D produzieren?

Die für die Vitamin D-Produktion verantwortlichen UV-B-Strahlen erreichen unsere Haut im Schatten und bei Nutzung von Sonnencreme nicht. Weitere Barrieren sind Wolken, Glasscheiben und Kleidung. Zur FAQ: Wann ist die Bildung von Vitamin D in der Sonne möglich?

↑ zurück zur Übersicht

 

  • Wie schütze ich mich am besten vor Sonnenbrand?

Der beste Schutz gegen Sonnenbrände ist die zeitliche Begrenzung der Sonnenexposition. 10-30 Minuten (abhängig vom Hauttyp) reichen in der sommerlichen Mittagssonne für die Vitamin D-Produktion vollkommen aus. Danach sollte direkte UV-Strahlung entweder gemieden oder entsprechende Vorkehrungen, wie die Nutzung hautabdeckender Textilien oder Sonnenschutzmittel mit UVA-Schutz, getroffen werden. 

Die Inhaltsstoffe der Sonnenschutzmittel sollten entweder natürlichen Ursprungs oder die Ungefährlichkeit mittels Langzeitstudien bestätigt sein. Eine Vielzahl von chemischen Sonnenschutzmitteln erfüllt diese Anforderungen nicht. Sie stehen im dringenden Verdacht krebsfördernd und neurotoxisch zu wirken sowie das Hormonsystem und die Fruchtbarkeit negativ zu beeinträchtigen. Hier erfahren Sie mehr zum Thema „gefährliche Sonnenschutzmittel“ >>

Ergänzend kann die präventive Einnahme von starken Antioxidantien wie zum Beispiel Astaxanthin, OPC, MPC, Glutathion oder Vitamin C & E die Haut zusätzlich schützen.

Um mehr über das „richtige Sonnen“ zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Wie schütze ich mich am besten vor Hautkrebs?

Sonnenbrände müssen nach Möglichkeit vermieden werden! Optimalerweise gewöhnen Sie sich im Frühjahr langsam an die UV-Strahlung und nutzen die Monate von Mitte März bis Anfang Oktober für eine regelmäßige Besonnung.

Moderate und gleichmäßige Sonnenexposition reduziert das Risiko Melanome (schwarzer Hautkrebs) zu manifestieren, wohingegen schockartige und heftige Besonnung das Risiko erhöhen. 

Ein weiterer wichtiger Punkt ist das parallel zur Sonnenexposition entstehende Vitamin D, welches vor Hautkrebs schützt. Niedrige Vitamin D-Spiegel im Blut sind hingegen mit einem erhöhten Auftreten und Fortschreiten von weißem Hautkrebs verbunden. 

Achten Sie daher bei der Nutzung von Sonnencremes unbedingt auf den UVA-Schutz! Ist dieser nicht entsprechend ausgewiesen, ist von einem erhöhten Hautkrebs-Risiko, verursacht durch das Sonnenschutzmittel, auszugehen. Denn durch reine UV-B-Blocker wird die Vitamin D-Synthese auf der Haut verhindert, während die gefährlichere UV-A-Strahlung ungehindert in die Haut eindringen kann. 

Die Inhaltsstoffe der Sonnenschutzmittel sollten entweder natürlichen Ursprungs oder die Ungefährlichkeit mittels Langzeitstudien bestätigt sein. Eine Vielzahl von chemischen Sonnenschutzmitteln erfüllt diese Anforderungen nicht. Sie stehen im dringenden Verdacht krebsfördernd und neurotoxisch zu wirken sowie das Hormonsystem und u. a. die Fruchtbarkeit negativ zu beeinträchtigen. Hier erfahren Sie mehr zum Thema „gefährliche Sonnenschutzmittel“ >>

Außerdem sollte Ihr Vitamin D-Spiegel den Mangelgrenzwert von 30 ng/ml nicht unterschreiten und ist bestenfalls zwischen 40-60 ng/ml angesiedelt. 

Um mehr über Hautkrebs zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Ich nehme Medikamente ein. Darf ich mich sonnen?

Das ist individuell abhängig vom Medikament. Viele Arzneistoffe lösen in Kombination mit UVA-Strahlung photosensitive Reaktionen aus. Diese wirken sich ähnlich wie starke Sonnenbrände, in Form von schmerzhaften Zuständen und Rötungen der Haut, bis hin zur Blasenbildung und Juckreiz aus. Vorsichtshalber sollten Sie bei der Einnahme von Medikamenten unbedingt den Beipackzettel beachten und im Zweifelsfall Rücksprache mit Ihrem Arzt halten.

Um mehr über die Kombination aus Medikamenten und Sonnenbad zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Kann man beim Sonnen im Solarium Vitamin D bilden?

Moderne Solarien verfügen über einen ausgewogenen UV-A/UV-B-Mix (und können je nach Bräunungsziel eingesetzt werden), welcher der Zusammensetzung der natürlichen Sonnenstrahlen bei vielen Geräten ähnlich ist. Die Strahlungsstärke entspricht mit 0,3 W/m² genau der Mittagssonne in südlichen Ländern. Entsprechend kann die UV-Bestrahlung in Sonnenbänken in ähnlicher Weise die Vitamin-D-Synthese anstoßen. Lassen Sie im Solarium unbedingt von ausgebildetem Fachpersonal beraten und achten Sie auf ein qualitativ hochwertiges Solarium. Beachten Sie außerdem unsere Tipps zum Sonnen im Solarium!

↑ zurück zur Übersicht

 

  • Kann man mit Tageslichtlampen Vitamin D produzieren?

Tageslichtlampen enthalten kein UV-Licht. Es ist aber gerade der UV-Anteil des Tageslichts, der unsere Haut dazu anregt, Vitamin D zu bilden. Insofern sind Tageslichtlampen nicht dazu geeignet, die Vitamin D Produktion anzukurbeln.

Tageslichtlampen beeinflussen die Bildung von Melatonin und Serotonin und haben über diese hormonelle Achse gerade im Winter einen stimmungsaufhellenden Effekt. Das Tageslicht – noch genauer der Blauanteil des Tageslichts – spielt bei diesem Umwandlungsprozess eine bedeutende Rolle. Es übernimmt nämlich die Rolle des Taktgebers und signalisiert unserem Körper, wann es Morgen bzw. Abend ist. Deswegen bewirkt eine regelmäßige Anwendung einer Tageslichtlampe am Morgen auch eine bessere Taktgebung für unsere innere biologischen Uhr und verbessert hierdurch unseren Schlaf. Bitte auf keinen Fall abends anwenden.

 

Thema Vitamin D-Einnahme

  • Wie viel Vitamin D  soll ich einnehmen?

Das ist abhängig von Ihrem derzeitigen Vitamin D-Serumspiegel und Ihrem Körpergewicht. Mit unserem kostenlosen Vitamin D-Bedarfsrechner können Sie Ihren persönlichen Vitamin D-Bedarf sehr einfach ermitteln. Klicken Sie hier um direkt zum Bedarfsrechner weitergeleitet zu werden!

Die exakte Einnahmedosis sollte jedoch durch regelmäßige Messungen bestimmt werden, denn nicht jedermann ist im Stande Vitamin D in gleichem Ausmaß aufzunehmen bzw. zu verwerten. Als Faustregel kann von einer sicheren Erhaltungsdosis von max. 5000 I.E. bei 70 kg Körpergewicht pro Tag ausgegangen werden – bei weniger Körpergewicht muss die Dosis entsprechend reduziert werden. Langfristige Einnahmedosierungen über 5000 I.E./Tag sollten unbedingt unter ärztlicher Begleitung erfolgen. Davon ausgenommen sind kurzzeitig hohe Initialdosen, die für max. wenige Wochen notwendig sind um den gewünschten Vitamin D-Spiegel aufzubauen.

↑ zurück zur Übersicht

 

  • Bioverfügbarkeit: Wie kann ich die Aufnahme von Vitamin D-Supplementen optimieren?

Wie alle fettlöslichen Vitamine, sollte auch Vitamin D zu einer fetthaltigen Mahlzeit eingenommen werden, um die maximale Resorption zu erzielen. Außerdem ist es von Vorteil jeden Tag eine bestimmte Menge davon zu sich zu nehmen und nicht in unregelmäßigen Abständen und Dosen. Um den unserer Ansicht nach optimalen Vitamin D-Spiegel von 40-60 ng/ml zu erreichen, können sie unseren Vitamin D-Bedarfsrechner nutzen.

Nach mehreren Wochen der Vitamin D-Einnahme, kann schlussendlich mittels Bluttestung der eigene Vitamin D-Spiegel (25(OH)D) ermittelt werden, der nun höher sein sollte als zuvor. Da die Verstoffwechselung von Vitamin D und somit auch die Bioverfügbarkeit individuell unterschiedlich sind, ist dies eine gängige Methode um die optimale Vitamin D-Dosis für sich selbst herauszufinden.

Sollte Ihr Vitamin D-Spiegel trotz der genannten Maßnahmen bei weitem nicht Ihrem Zielwert entsprechen, empfiehlt es sich auf ein anderes Vitamin D-Präparat eines anderen Herstellers umzusteigen. Hilft auch das nicht,  könnten Probleme mit der Fettverdauung die Ursache sein, die einer ärztlichen Behandlung bedürfen.

↑ zurück zur Übersicht

 

  • In welcher Form sollte Vitamin D am besten eingenommen werden?

Sämtliche Vitamin D-Supplemente werden im Idealfall zu fetthaltigen Mahlzeiten eingenommen, da hierbei die höchste Bioverfügbarkeit des fettlöslichen Vitamin D gegeben ist. In welcher Form Vitamin D supplementiert wird, ist nebensächlich, doch sind wohl ölhaltige Tropfen aufgrund individueller Dosierungsmöglichkeiten am geeignetsten. Bei Tabletten sollte auf die Füllstoffe geachtet werden. Von Multipräparaten (ein Mix an Mikronährstoffen), in denen Vitamin D meist nur in sehr geringen Mengen vorhanden ist, raten wir ab.

Um mehr über Vitamin D-Präparate zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Wie häufig sollte ich Vitamin D einnehmen? Ist einmal pro Woche ausreichend?

Nein, Vitamin D sollte täglich zugeführt werden, damit es seine volle Wirkung entfalten kann. Egal ob durch die UV-B Strahlung der Sonne bzw. eines hochwertigen Solariums induziert, als Tropfen, Tabletten oder als Dragees. Das reine, ungebundene und für den Großteil der präventiven Wirkungen zuständige Vitamin D, hat eine Halbwertszeit von nur 24 Stunden.

Um mehr über das optimale Einnahmeintervall zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Kann Vitamin D toxisch wirken?

Werden über längere Zeiträume extrem hohe Dosen konsumiert, kann Vitamin D auch Intoxikationen hervorrufen. Der toxische Bereich beginnt dabei ab Vitamin D-Werten von über 150 ng/ml. Die von uns empfohlenen Dosierungen führen allerdings nicht zu derartig hohen Vitamin D-Spiegeln, sodass Toxizitäten insofern ausgeschlossen sind.

Im Zweifelsfall kann eine Toxizität über einen außergewöhnlich hohen Kalziumspiegel ermittelt werden, da dies in der Regel die einzige Nebenwirkung eines extrem hohen Vitamin D-Spiegels ist. Der Kalziumspiegel sollte sich zw. 2,1 – 2,7 mmol/l befinden. Ist der Kalziumspiegel also über 2,7 mmol, sollte ein Arzt konsultiert und das Vitamin D so lange abgesetzt werden, bis der Wert wieder im Normbereich liegt.

Um mehr über das Thema Vitamin D & Toxitzität zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Wann sollte ich Vitamin D nicht oder nur mit Vorsicht einnehmen (Kontraindikationen)?

In sehr seltenen Fällen sollte Vitamin D nicht oder nur unter ärztlicher Beobachtung eingenommen werden. Das betrifft unter Umständen die Stoffwechselerkrankungen Hyperkalzämie oder Hyperparathyreoidismus und jene Krankheitsbilder, die damit in Verbindung stehen (Liste unvollständig):

Hyperkalzämie: eine Erhöhung des Kalziumspiegels im Blut. Somit sind auch alle Krankheiten betroffen, die sich auf eine Hyperkalzämie zurückführen lassen.

Williams-Beuren-Syndrom oder Williams-Syndrom: ist eine genetisch bedingte Form der Hyperkalzämie.

Nephrokalzinose: dabei handelt es sich um Ablagerungen von Kalziumsalzen in der Niere.

Sarkoidose: hierbei kann eine erhöhte Ausscheidung von Kalzium über die Niere stattfinden.

Hyperparathyreoidismus: eine Regulationsstörung der Nebenschilddrüse, die zu erhöhten Ausschüttungen des Parathormons (PTH) führt.

↑ zurück zur Übersicht

 

  • Reagiert jeder Mensch gleich auf Vitamin D?

Nein, davon abgesehen, dass wahrscheinlich ca. 25% der Menschen aufgrund von genetischen Faktoren Vitamin D-Resistenzen aufweisen und höhere Dosen bräuchten, ist die Reaktion unter anderem auch von der jeweiligen Versorgungsituation des Betroffenen abhängig. Bei Menschen mit eingangs sehr niedrigen Vitamin D-Spiegeln kann von umfangreicheren positiven Effekten ausgegangen werden, wenn der Spiegel angehoben wird als bei bereits regelrecht Versorgten. 

Darüber hinaus ist beinahe jede Körperzelle mit Vitamin D-Rezeptoren ausgestattet, was bedeutet, dass sich Vitamin D auf sämtliche Organe, Gewebe und Funktionen im Körper positiv auswirkt. So vielseitig die Wirkungen von Vitamin D sind, so zahlreich und verschieden sind auch die dadurch ausgelösten Reaktionen und präventiven Schutzwirkungen.

Negative Nebenwirkungen können nur bei extremer Überdosierung in Form von Hyperkalzämie und zu schneller Anhebung des Vitamin D-Spiegels in Form von Herzrasen erfolgen.

↑ zurück zur Übersicht

 

  • Vitamin D-Co-Faktoren: Warum werden Vitamin D-Präparate oftmals zusammen mit Vitamin K2 angeboten?

Vitamin K2 hat im Zusammenspiel mit Vitamin D eine wichtige Rolle im Knochenstoffwechsel und verbessert u.a den Einbau von Kalzium in die Knochen signifikant. Ferner kann Vitamin K2 Verkalkungen der Blutgefäße (Artherosklerose) verhindern bzw. auflösen und hat noch wesentlich mehr positive Effekte zu bieten. Aus diesen Gründen wird Vitamin K2 als Cofaktor von Vitamin D gehandelt und meist zusammen angeboten. Eine gleichzeitige Einnahme der beiden Vitamine ist daher in mehrfacher Hinsicht sinnvoll aber nicht zwingend erforderlich.

Um mehr über Vitamin K2 zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Vitamin D-Co-Faktoren: Muss ich bei einer Vitamin D-Supplementation Magnesium begleitend einnehmen?

Als der wichtigste Co-Faktor von Vitamin D sollte Magnesium unbedingt berücksichtigt werden. Beispielsweise ist Magnesium notwendig, um Vitamin D in seine aktive Form umzuwandeln. Generell wird empfohlen, Magnesium nur bei nachgewiesenem Mangel, der aber sehr weit verbreitet zu sein scheint, zu supplementieren. Für eine Supplementation sprechen die zahlreichen Beteiligungen des Minerals an biochemischen Prozessen im Körper, für die Magnesium unabdingbar ist.

Um mehr über Magnesium zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Ist es vorteilhaft Vitamin D mit Kalzium zu kombinieren?

Grundsätzlich nein! Ein regelrechter Vitamin D-Spiegel ist Voraussetzung für die Kalziumaufnahme ins Blut. Ein Kalziummangel sollte daher vorrangig mit der Beseitigung des Vitamin D-Mangels behandelt werden. Da bei normaler Ernährungsweise davon ausgegangen werden kann, dass dem Körper mehr als genügend Kalzium (800-1000 mg/Tag) zugeführt wird, liegt die Ursache für einen Mangel und den damit verbundenen Problemen in der Regel folglich bei zu niedrigen Vitamin D-Spiegeln. Falls überhaupt sollten nur in Ausnahmefällen und dann unter ärztlicher Begleitung Kalziumprodukte eingenommen werden.

Um mehr über das Zusammenspiel von Vitamin D, Kalzium und z.B. der Sango Meereskoralle zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Sollen schwangere Frauen Vitamin D einnehmen und wenn ja wie viel?

Gerade schwangere Frauen sollten für eine möglichst unkomplizierte Schwangerschaft und im Sinne der der Gesundheit des Säuglings und der Mutter selbst bestens mit Vitamin D versorgt werden. Wir empfehlen Dosen von mindestens 4000 I.E. täglich.

Um mehr über Vitamin D in der Schwangerschaft zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Dürfen Kinder Vitamin D nehmen?

Dass Vitamin D eine Grundvoraussetzung für ein solides Knochenwachstum ist und Kinder vor Rachitis schützt, ist unumstritten. Ferner begünstigt ein Vitamin D-Mangel in der Kindheit die Entstehung verschiedenster chronischer Erkrankungen im Kindesalter und im späteren Leben. Vor allem im Säugling- und Kindesalter ist ein adäquater Vitamin D-Spiegel enorm wichtig für die Entwicklung des Immunsystems und die damit verbundene Gesundheit. Es wird dringend empfohlen auch Kinder in Absprache mit dem Kinderarzt entsprechend mit Vitamin D zu versorgen.

Um mehr über die Wirkung von Vitamin D auf Kinder zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

 

  • Gibt es tatsächlich – wie einige Akteure behaupten – zahlreiche Studien, die belegen, dass Vitamin D wirkungslos ist?

In der Regel sind derartige Studien und die damit verbundenen Aussagen, wohlwollend ausgedrückt, auf mangelnde Fachkenntnisse zurückzuführen, was sich offenbar quer durch den Gesundheitsapparat zieht. Das Studiendesign ist für eine adäquate Einschätzung der Seriosität einer Studie der entscheidende Faktor. So sind beispielsweise durch extrem unterdosierte Verabreichungen von Vitamin D mit 400 I.E. ebenso keine nennenswerten Erfolge zu erwarten, wie wenn die Vitamin D-Verabreichung nicht täglich, sondern wöchentlich oder gar monatlich vonstattengeht. Eine aussagekräftige Studie zeichnet sich ferner durch das Messen der Vitamin D-Blutwerte vor und nach einer Intervention aus, da relevante Aussagen über die Vitamin D-Versorgung sowie den tatsächlichen Interventionsgrad nur so dokumentiert werden können. Es gibt aber auch noch weitere Fehlerquellen und Fehlinterpretationen die wir für Sie in einem Artikel aufbereitet haben.

Um mehr über die sich in Umlauf befindenden Desinformationen zum Vitamin D zu erfahren, klicken Sie bitte hier!

↑ zurück zur Übersicht

Das Projekt SonnenAllianz

  • Was sind die Ziele der SonnenAllianz?

Die SonnenAllianz ist ein Projekt der Deutschen Stiftung für Gesundheitsinformation und Prävention (DSGIP). Sie hat sich zum Ziel gesetzt, unabhängig über die vielen gesundheitlichen Themen rund um die Sonne und das Sonnenlicht zu berichten und aufzuklären. 

Die SonnenAllianz will die gesundheitsfördernden Aspekte der Sonne für ein breites Publikum bekannt und transparent machen und Mythen in der öffentlichen Diskussion durch wissenschaftliche Fakten entweder belegen oder widerlegen. Dazu stellt die Projektplattform Anschauungsmaterial, Medien und Werkzeuge zum gesunden Umgang mit dem Sonnenlicht für jede/n Interessierte/n bereit.

Um mehr über die Ziele der SonnenAllianz zu erfahren, klicken Sie bitte hier.

↑ zurück zur Übersicht

 

  • Wie kann ich das Projekt SonnenAllianz unterstützen?

Als Projekt der gemeinnützigen Deutschen Stiftung für Gesundheitsinformation und Prävention (DSGIP) lebt die SonnenAllianz ausschließlich von privaten Spenden. Ihre finanzielle Unterstützung ermöglicht uns, die Inhalte der SonnenAllianz-Website stets um neueste wissenschaftliche Erkenntnisse zu den Themen Sonne, Licht und Vitamin D zu erweitern und mit nützlichen Tools und Medien auszustatten. 

Am einfachsten erreicht uns Ihre Spende über die Spendenplattform Betterplace. Jede Spende zählt und vor allem kleine Dauerspenden sichern das Projekt langfristig ab!

Jetzt Spenden! Das Spendenformular wird von betterplace.org bereit gestellt.

Um über alternative Spendenmöglichkeiten zu erfahren, klicken Sie bitte hier.

↑ zurück zur Übersicht

Vitamin D – Immer wenn es um Leben und Tod geht!

Literaturverzeichnis

Kapitel 1 – Kein Leben ohne Sonne

  1. Dobzhansky T (1973). Nothing in Biology Makes Sense Except in the Light of Evolution, American Biology Teacher, 35 (3): 125–129, JSTOR 4444260; reprinted in Zetterberg, J. Peter, ed. (1983), Evolution versus Creationism, Phoenix, Arizona: ORYX Press
  2. Planet-Schule: https://www.planet-schule.de/mm/die-erde/Barrierefrei/pages/Die_Anfaenge_der_Erde.html
  3. Bernhard Kegel: Die Herrscher der Welt. Wie Mikroben unser Leben bestimmen. ISBN 978-3832197735, DuMont Buchverlag, Köln 2015
  4. Sven Böttcher: Rette sich, wer kann: Das Krankensystem meiden und gesund bleiben. ISBN 978-3954716388, ABOD Verlag, München 2019
  5. Peter C. Gøtzsche: Tödliche Medizin und organisierte Kriminalität: Wie die Pharmaindustrie unser Gesundheitswesen korrumpiert. ISBN 978-3742311610, Riva Verlag, München 2019
  6. Dr. Gerd Reuther: Der betrogene Patient: Ein Arzt deckt auf, warum Ihr Leben in Gefahr ist, wenn Sie sich medizinisch behandeln lassen. ISBN 978-3742310347, Riva Verlag, München 2019
  7. Ulrike von Aufschnaiter: Deutschlands Kranke Kinder: Wie auf Anweisung der Regierung Kitas und Schulen die Gesundheit unserer Kinder schädigen. ISBN 978-3748262374, tredition Verlag, Hamburg 2019
  8. Eva Herman: Die Wahrheit und ihr Preis: Meinung, Macht und Medien. ISBN 978-3942016285, Kopp Verlag, Rottenburg a.N. 2010
  9. Rainer Mausfeld: Warum schweigen die Lämmer? ISBN 978-3864892776, Westend Verlag, Wiesbaden 2019

Abb.1: enriquelopezgarre, www.pixabay.com

Abb.2: Emde Grafik, Copyright AMM

Kapitel 2 – Nationaler und internationaler Vitamin D-Mangel

  1. National Center for Biotechnology Information. PubMed Single Citation Matcher [homepage on the Internet]: U.S. National Library of Medicine; National Institutes of Health; 2008. Internet: http://www.ncbi.nlm.nih.gov/entrez/query/static/citmatch.html (updated 09 May 2008; accessed 14 Jul 2008)
  2. Hintzpeter B, Mensink GB et al. Vitamin D status and health correlates among German adults. European journal of clinical nutrition 2007
  3. Hintzpeter, B et al. Zitat 3: Eigenschaft des Vitamin D im Kindesalter. Proceedings of the German Nutrition Society 10 2007;10:47
  4. Hintzpeter B, Scheidt-Nave C et al. Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. J Nutr. 2008 Aug;138(8):1482-90
  5. Puri S, Agarwala N et al. Vitamin D status of apparently healthy schoolgirls from two different socioeconomic strata in Delhi: relation to nutrition and lifestyle. British Journal of Nutrition 2008;99(4):876–82
  6. Hyppönen E, Power C. Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. The American journal of clinical nutrition 2007;85(3):860–8
  7. Woo J, Lam CW et al. Very high rates of vitamin D insufficiency in women of child-bearing age living in Beijing and Hong Kong. The British Journal of Nutrition 2008;99(6):1330–4
  8. Islam MZ, Akhtaruzzaman M, Lamberg-Allardt C. Hypovitaminosis D is common in both veiled and nonveiled Bangladeshi women. Asia Pacific journal of clinical nutrition 2006;15(1):81–7.
  9. Scheidt-Nave C, Hintzpeter B et al (2015). Vitamin D status among adults in Germany–results from the German Health Interview and Examination Survey for Adults (DEGS1). In: BMC public health 15, S. 641. DOI: 10.1186/s12889-015-2016-7
  10. Robert Koch-Institut, Berlin – Gert B.M. Mensink, Clarissa Lage Barbosa, Anna-Kristin Brettschneider. Journal of Health Monitoring 2016 1(2) DOI 10.17886/RKI-GBE-2016-033
  11. Göthel, Christopher (2020, May 08). Entwicklung der Epidemiologie und der jahreszeitlichen Abhängigkeit des Vitamin-D-Status in Deutschland in den Jahren 2007 bis 2019. Retrieved June 25, 2020, from https://tore.tuhh.de/handle/11420/6400
  12. Mehany S, Pöppelmeyer C et al.  Niedrige Vitamin-D-Blutspiegel in Wiener Schulkindern. EDDY Studie, Aktuel Ernahrungsmed 2015; 40 – P2_3. DOI: 10.1055/s-0035-1550200
  13. Gellert S, Strohle A et al (2017). Higher prevalence of vitamin D deficiency in German pregnant women compared to non-pregnant women. In: Archives of gynecology and obstetrics 296 (1), S. 43–51. DOI: 10.1007/s00404-017-4398-5
  14. Cashman KD, Gonzalez-Gross M et al (2016). Vitamin D deficiency in Europe: pandemic? Retrieved from https://academic.oup.com/ajcn/article/103/4/1033/4662891
  15. Li H, Xiao P et al (2020). Widespread vitamin D deficiency and its sex-specific association with adiposity in Chinese children and adolescents. Nutrition, 71, 110646. DOI: 10.1016/j.nut.2019.110646
  16. Mirfakhraee S et al (2017).  Longitudinal changes in serum 25-hydroxyvitamin D in the Dallas Heart Study. Clin Endocrinol (Oxf)
  17. Galior K, Ketha H et al (2018). 10 years of 25-hydroxyvitamin-D testing by LC-MS/MS-trends in vitamin-D deficiency and sufficiency. Bone Reports, 8, 268–273. DOI: 10.1016/j.bonr.2018.05.003
  18. Cashman KD, Kiely M (2018). Contribution of nutrition science to the vitamin D field—Clarity or confusion? The Journal of Steroid Biochemistry and Molecular Biology. DOI:10.1016/j.jsbmb.2018.10.020

Kapitel 3 – Der Vitamin D-Stoffwechsel 

  1. Holick MF. Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry 1971;10(14):2799–804
  2. Lawson DEM, Fraser DR, Kodicek E, Morris HR, Williams DH. Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature 1971;230(5291):228.230
  3. Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life sciences 1975;16(3):353–62
  4. Die Bedeutung der Vitamin D – Vitamin D-Rezeptor-Achse in der Aktivierung der humanen hepatischen Sternzellen; https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00038454/Dissertation_Beilfuss.pdf
  5. DeLuca HF, Darwish HM, Ross TK, Moss VE. Mechanism of action of 1,25-dihydroxyvitamin D on target gene expression. Journal of nutritional science and vitaminology 1992;19-26
  6. Kauer H. Vitamin D in Immunologie und Onkologie – Eine Literaturstudie. [Dissertation]. München: LMU München; 09.02.2007
  7. Hollis BW et al (2013). The Role of the Parent Compound Vitamin D with Respect to Metabolism and Function: Why Clinical Dose Intervals Can Affect Clinical Outcomes. In: The Journal of clinical endocrinology and metabolism 98 (12), S. 4619–4628. DOI: 10.1210/jc.2013-2653
  8. Ginde AA, Wolfe P et al. Defining vitamin D status by secondary hyperparathyroidism in the U.S. population, Journal of Endocrinological Investigation 2012, 35, pages 42–48
  9. Domarus C, Brown J et al. How much vitamin D do we need for skeletal health? In: Clinical orthopaedics and related research 469 (2011), S. 3127–3133
  10. Hollis BW et al (2015). Maternal Versus Infant Vitamin D Supplementation During Lactation: A Randomized Controlled Trial. In: Pediatrics 136 (4), S. 625–634. DOI: 10.1542/peds.2015-1669
  11. Hollis BW, Wagner CL et al (2006). High-dose vitamin D3 supplementation in a cohort of breastfeeding mothers and their infants: a 6-month follow-up pilot study. In: Breastfeeding medicine: the official journal of the Academy of Breastfeeding Medicine 1 (2), S. 59–70. DOI: 10.1089/bfm.2006.1.59
  12. Dawodu A, Salameh KM et al (2019). The Effect of High-Dose Postpartum Maternal Vitamin D Supplementation Alone Compared with Maternal Plus Infant Vitamin D Supplementation in Breastfeeding Infants in a High-Risk Population. A Randomized Controlled Trial. Nutrients, 11(7), 1632. DOI:10.3390/nu11071632
  13. Garland CF, Kim JJ et al (2014). Meta-analysis of all-cause mortality according to serum 25-hydroxyvitamin D. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24922127
  14. Teixeira DS, Nobrega YKM et al (2012). Evaluation of 25-hydroxy-vitamin D and parathyroid hormone in Callithrix penicillata primates living in their natural habitat in Brazil. Journal of Medical Primatology, 41(6), 364–371. DOI: 10.1111/jmp.12021
  15. Power ML, Dittus WP (2017). Vitamin D status in wild toque macaques (Macaca sinica) in Sri Lanka. American Journal of Primatology, 79(6). DOI:10.1002/ajp.22655
  16. Luxwolda MF, Kuipers, RS et al (2012). Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. British Journal of Nutrition, 108(9), 1557–1561. DOI: 10.1017/s0007114511007161
  17. Shirvan A, Holick MF et al (2019). Disassociation of Vitamin D’s Calcemic Activity and Non-calcemic Genomic Activity and Individual Responsiveness: A Randomized Controlled Double-Blind Clinical Trial. Scientific Reports, 9(1). DOI: 10.1038/s41598-019-53864-1
  18. Shaat N, Kristensen K et al (2020). Association between the rs1544410 polymorphism in the vitamin D receptor (VDR) gene and insulin secretion after gestational diabetes mellitus. Plos One, 15(5). DOI: 10.1371/journal.pone.0232297
  19. Pereira‐Santos M, Oliveira AM et al (2019). Polymorphism in the vitamin D receptor gene is associated with maternal vitamin D concentration and neonatal outcomes: A Brazilian cohort study. American Journal of Human Biology. DOI: 10.1002/ajhb.23250
  20. Abd-Elsalam S, Mohamed A, El-Adawy E et al (2019). Association of serum level of vitamin D and VDR polymorphism Fok1 with the risk or survival of pancreatic cancer in Egyptian population. Indian Journal of Cancer, 56(2), 130. DOI: 10.4103/ijc.ijc_299_18
  21. Yang SK, Song N, Zhang H et al (2019). Association of Vitamin D Receptor Gene Polymorphism With the Risk of Nephrolithiasis. Therapeutic Apheresis and Dialysis, 23(5), 425–436. DOI: 10.1111/1744-9987.12797
  22. Ahmed J, Makonnen E et al (2019). Vitamin D Status and Association of VDR Genetic Polymorphism to Risk of Breast Cancer in Ethiopia. Nutrients, 11(2), 289. DOI: 10.3390/nu11020289
  23. Carlberg C, Haq A (2016). The concept of the personal vitamin D response index. In: The Journal of steroid biochemistry and molecular biology. DOI: 10.1016/j.jsbmb.2016.12.011
  24. Finamor DC, Sinigaglia-Coimbra R et al (2013). A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. In: Dermato-endocrinology 5 (1), S. 222–234. DOI: 10.4161/derm.24808

Videoempfehlung: Fit mit Fett – ein Leben lang – Vortrag von Prof. Dr. med. Jörg Spitz

https://www.youtube.com/watch?v=xwSPLAkkRYc

Abb. 2: siehe Nr. 9

Kapitel 4 – Kofaktoren für Vitamin D

  1. Schimatschek HF, Rempis R (2001). Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnesium research: official organ of the International Society for the Development of Research on Magnesium, 14. Jg., Nr. 4, S. 283-290
  2. Rosanoff A, Weaver CM et al (2012). Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutrition reviews 70.3: 153-164
  3. Medalle R, Waterhouse C et al (1976). Vitamin D resistance in magnesium deficiency. The American Journal of Clinical Nutrition, 29(8), 854-858. DOI:10.1093/ajcn/29.8.854
  4. Theuwissen E, Cranenburg EC et al (2012). Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. British Journal of Nutrition, 108(09), 1652-1657. DOI:10.1017/s0007114511007185
  5. Kim S, Kim K et al (2010). Correlation of Undercarboxylated Osteocalcin (ucOC) Concentration and Bone Density with Age in Healthy Korean Women. Journal of Korean Medical Science, 25(8), 1171. DOI:10.3346/jkms.2010.25.8.1171
  6. Nakano T, Tsugawa N et al (2011). High prevalence of hypovitaminosis D and K in patients with hip fracture. Department of Health and Nutrition, Osaka Shoin Women’s University, 4-2-26 Hishiyanishi, Higashiosaka-shi, Osaka 577-8550 Japan
  7. Fujita Y, Iki M et al (2011). Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: The Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporosis International, 23(2), 705-714. DOI:10.1007/s00198-011-1594-1
  8. Iwamoto J, Sato Y et al (2009). High-dose vitamin K supplementation reduces fracture incidence in postmenopausal women: A review of the literature. Nutrition Research, 29(4), 221-228. DOI:10.1016/j.nutres.2009.03.012
  9. Yamaguchi M (2010). Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation. International Journal of Molecular Medicine. DOI:10.3892/ijmm.2010.562
  10. Forli L, Bollerslev J et al (2010). Dietary Vitamin K2 Supplement Improves Bone Status After Lung and Heart Transplantation. Transplantation, 89(4), 458-464. DOI:10.1097/tp.0b013e3181c46b69
  11. Booth SL, Gundberg C et al (2004). Associations between Vitamin K Biochemical Measures and Bone Mineral Density in Men and Women. The Journal of Clinical Endocrinology & Metabolism, 89(10), 4904-4909. DOI:10.1210/jc.2003-031673
  12. Gröber U, Holick MF et al (2013). Vitamin D. Dermato-Endocrinology, 5(3), 331-347. DOI:10.4161/derm.26738
  13. Cantorna MT, Snyder L et al (2019). Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Critical Reviews in Biochemistry and Molecular Biology, 54(2), 184–192. DOI: 10.1080/10409238.2019.1611734

Titelbild: Gerd Altmann, www.pixabay.com

Kapitel 5 – Die Bedeutung von Vitamin D am Anfang des Lebens

  1. Voulgaris N, Papanastasiou L et al (2017). Vitamin D and aspects of female fertility. In: Hormones (Athens, Greece) 16 (1), S. 5–21. DOI: 10.14310/horm.2002.1715
  2. Miliku K, Burne TH et al (2016). Maternal vitamin D concentrations during pregnancy, fetal growth patterns, and risks of adverse birth outcomes. In: The American journal of clinical nutrition 103 (6), S. 1514–1522. DOI: 10.3945/ajcn.115.123752
  3. Qin LL, Fang-Guo Y et al (2016). Does Maternal Vitamin D Deficiency Increase the Risk of Preterm Birth: A Meta-Analysis of Observational Studies. In: Nutrients 8 (5). DOI: 10.3390/nu8050301
  4. Cantorna MT, Mahon BD (2004). Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. In: Experimental biology and medicine (Maywood, N.J.) 229 (11), S. 1136–1142
  5. Dankers W, Edgar M et al (2016). Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. In: Frontiers in immunology 7, S. 697. DOI: 10.3389/fimmu.2016.00697
  6. Gellert S, Bitterlich N et al (2017). Higher prevalence of vitamin D deficiency in German pregnant women compared to non-pregnant women. In: Archives of gynecology and obstetrics 296 (1), S. 43–51. DOI: 10.1007/s00404-017-4398-5
  7. Wagner CL, Baggerly C et al (2016). Post-hoc analysis of vitamin D status and reduced risk of preterm birth in two vitamin D pregnancy cohorts compared with South Carolina March of Dimes 2009-2011 rates. In: The Journal of steroid biochemistry and molecular biology 155 (Pt B), S. 245–251. DOI: 10.1016/j.jsbmb.2015.10.022
  8. Hollis BW, Wagner CL (2013). The Role of the Parent Compound Vitamin D with Respect to Metabolism and Function: Why Clinical Dose Intervals Can Affect Clinical Outcomes. In: The Journal of clinical endocrinology and metabolism 98 (12), S. 4619–4628. DOI: 10.1210/jc.2013-2653
  9. Holick MF,  Bischoff-Ferrari HA et al (2011). Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. In: The Journal of clinical endocrinology and metabolism 96 (7), S. 1911–1930. DOI: 10.1210/jc.2011-0385
  10. GrassrootsHealth Nutrient Research Institute (2018): https://www.grassrootshealth.net/wp-content/uploads/2017/01/MRIP-chart-booklet-08-2018.pdf
  11. Hollis BW, Wagner CL et al (2015). Maternal Versus Infant Vitamin D Supplementation During Lactation: A Randomized Controlled Trial. In: Pediatrics 136 (4), S. 625–634. DOI: 10.1542/peds.2015-1669
  12. Wagner CL, Hollis BW et al (2006). High-dose vitamin D3 supplementation in a cohort of breastfeeding mothers and their infants: a 6-month follow-up pilot study. In: Breastfeeding medicine: the official journal of the Academy of Breastfeeding Medicine 1 (2), S. 59–70. DOI: 10.1089/bfm.2006.1.59
  13.  Voulgaris N, Papanastasiou L et al (2017). Vitamin D and aspects of female fertility. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28500824
  14. Menichini D, Facchinetti F (2019). Effects of vitamin D supplementation in women with polycystic ovary syndrome: a review. Gynecological Endocrinology, 1–5. DOI: 10.1080/09513590.2019.1625881
  15. Gellert S, Bitterlich N et al (2017). Higher prevalence of vitamin D deficiency in German pregnant women compared to non-pregnant women. In: Archives of gynecology and obstetrics 296 (1), S. 43–51. DOI: 10.1007/s00404-017-4398-5
  16. Abulebda K, Abu-Sultaneh S, Lutfi R (2017. It is not always child abuse. Multiple fractures due to hypophosphatemic rickets associated with elemental formula use. In: Clinical case reports 5 (8), S. 1348–1351. DOI: 10.1002/ccr3.1052
  17. Cannell JJ, Holick MF (2018). Multiple unexplained fractures in infants and child physical abuse. In: The Journal of steroid biochemistry and molecular biology 175, S. 18–22. DOI: 10.1016/j.jsbmb.2016.09.012
  18. Ulrike von Aufschnaiter – Deutschlands Kranke Kinder: Wie auf Anweisung der Regierung Kitas und Schulen die Gesundheit unserer Kinder schädigen; ISBN 978-3748262374, tredition Verlag, Hamburg 2019
  19. Kühnisch J, Thiering E et al (2014). Elevated Serum 25(OH)-Vitamin D Levels Are Negatively Correlated with Molar-Incisor Hypomineralization. Journal of Dental Research, 94(2), 381–387. DOI: 10.1177/0022034514561657
  20. Schroth R, Moffat M et al (2015). Vitamin D and Dental Caries in Children. Journal of Dental Research, 95(2), 173–179. DOI: 10.1177/0022034515616335
  21. Wolsk HM, Harshfield BJ et al (2017). Vitamin D supplementation in pregnancy, prenatal 25(OH)D levels, race, and subsequent asthma or recurrent wheeze in offspring: Secondary analyses from the Vitamin D Antenatal Asthma Reduction Trial. In: The Journal of allergy and clinical immunology. DOI: 10.1016/j.jaci.2017.01.013

Titelbild: amyelizabethquinn, www.pixabay.com

Abb. 4: Creative Commons Attribution (CC BY 4.0)

Kapitel 6.1 – Vitamin D und Immunsystem

  1. Chirumbolo S, Bjorklund G et al (2017). The Role of Vitamin D in the Immune System as a Pro-survival Molecule. In: Clinical therapeutics 39 (5), S. 894–916. DOI: 10.1016/j.clinthera.2017.03.021
  2. Venturini E, Facchini L et al (2014). Vitamin D and tuberculosis. A multicenter study in children. In: BMC infectious diseases 14, S. 652. DOI: 10.1186/s12879-014-0652-7
  3. Arnedo-Pena A, Garcia-Ferrer D et al (2015). Vitamin D status and incidence of tuberculosis among contacts of pulmonary tuberculosis patients. In: The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease 19 (1), S. 65–69. DOI: 10.5588/ijtld.14.0348
  4. Villar LM, Del Campo JA et al (2013). Association between vitamin D and hepatitis C virus infection. A meta-analysis. In: World journal of gastroenterology 19 (35), S. 5917–5924. DOI: 10.3748/wjg.v19.i35.5917
  5. Garcia-Alvarez M, Pineda-Tenor D et al (2014). Relationship of vitamin D status with advanced liver fibrosis and response to hepatitis C virus therapy. A meta-analysis. In: Hepatology (Baltimore, Md.) 60 (5), S. 1541–1550. DOI: 10.1002/hep.27281
  6. Cusick SE, Polgreen LE et al (2014). Vitamin D insufficiency is common in Ugandan children and is associated with severe malaria. In: PloS one 9 (12), e113185. DOI: 10.1371/journal.pone.0113185
  7. Cannell JJ, Holick MF et al. Epidemic influenza and vitamin D. Epidemiology and infection 2006;134(6):1129–40
  8. Laaksi I, Ruohola JP et al. An association of serum vitamin D concentrations < 40 nmol/L with acute respiratory tract infection in young Finnish men. American Journal of Clinical Nutrition 2007;86(3):714–7
  9. Li Y C, Chen Y et al (2015). Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation. The Journal of Steroid Biochemistry and Molecular Biology, 148, 179–183. DOI: 10.1016/j.jsbmb.2015.01.011
  10. Dimitrov V, White JH (2017). Vitamin D signaling in intestinal innate immunity and homeostasis. Molecular and Cellular Endocrinology, 453, 68-78. DOI:10.1016/j.mce.2017.04.010
  11. Kocovska E, Gaughran F et al (2017). Vitamin-D Deficiency As a Potential Environmental Risk Factor in Multiple Sclerosis, Schizophrenia, and Autism. In: Frontiers in psychiatry 8, S. 47. DOI: 10.3389/fpsyt.2017.00047
  12. Gominak S. (2016). Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmunity. Medical Hypotheses, 94, 103-107. DOI:10.1016/j.mehy.2016.07.007
  13. Quraishi SA, Needleman JS et al (2015). Effect of Cholecalciferol Supplementation on Vitamin D Status and Cathelicidin Levels in Sepsis. Critical Care Medicine, 43(9), 1928–1937. DOI: 10.1097/ccm.0000000000001148
  14. Grant WB, Baggerly CA et al (2020). Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients, 12(4), 988. DOI:10.3390/nu12040988
  15. Kara M et al. Scientific Strabismus’ or Two Related Pandemics: COVID-19 & Vitamin D Deficiency. British Journal of Nutrition, 2020, pp. 1–20., DOI:10.1017/s0007114520001749
  16. Li X et al. Risk Factors for Severity and Mortality in Adult COVID-19 Inpatients in Wuhan. Journal of Allergy and Clinical Immunology, 2020, DOI:10.1016/j.jaci.2020.04.006
  17. Mark M. Alipio, Department of Radiologic Technology, College of Allied Health Sciences: Vitamin D supplementation could possibly improve clinical outcomes of patients infected with Coronavirus-2019 (Covid-2019), 2020
  18. Kaufman HW, Holick MF et al (2020). SARS-CoV-2-Positivitätsraten in Verbindung mit zirkulierenden 25-Hydroxyvitamin D-Spiegeln. PLoS ONE 15 (9): e0239252. https://doi.org/10.1371/journal.pone.0239252
  19. Radujkovic A, Hippchen T et al (2020). Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients, 12(9), 2757. doi:10.3390/nu12092757
  20. https://vitamindwiki.com/COVID-19+Coronavirus+can+most+likely+be+fought+by+Vitamin+D#Intervention
  21. Castillo M et al. (2020). Effect of Calcifediol Treatment and best Available Therapy versus best Available Therapy on Intensive Care Unit Admission and Mortality Among Patients Hospitalized for COVID-19: A Pilot Randomized Clinical study. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960076020302764?via%3Dihub
  22. Murdaca G, Tonacci A et al (2019). Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity Reviews, 18(9), 102350. DOI: 10.1016/j.autrev.2019.102350
  23. Acheson ED, Bachrach CA. The distribution of multiple sclerosis in U. S. veterans by birthplace. American journal of hygiene 1960;72:88–99
  24. Kurtzke JF. On the fine structure of the distribution of multiple sclerosis. Acta Neurol Scand. Acta neurologica Scandinavica 1967;43(3):257–82
  25. Dean G (1974). Diet And Geographical Distribution Of Multiple Sclerosis. The Lancet, 304(7894), 1445. DOI: 10.1016/s0140-6736(74)90091-9
  26. Munger KL, Hollis BW et al. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA, The Journal of the American Medical Association 2006;296(23):2832–8
  27. Van der Mei IA, Ponsonby AL et al. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. Journal of neurology 2007;254(5):581–90
  28. Kampman M, Wilsgaard T, Mellgren S. Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. Journal of neurology 2007;254(4):471–7
  29. Smolders J, Damoiseaux J et al. Vitamin D as an immune modulator in multiple sclerosis, a review. Journal of neuroimmunology 2008;194(1-2):7–17
  30. Niino M, Fukazawa T et al. Therapeutic potential of vitamin d for multiple sclerosis. Current medicinal chemistry 2008;15(5):499–505
  31. Smolders J, Moen SM et al (2011). Vitamin D in the healthy and inflamed central nervous system. Access and function. In: Journal of the neurological sciences 311 (1-2), S. 37–43. DOI: 10.1016/j.jns.2011.07.033
  32. Pierrot-Deseilligny C, Souberbielle JC (2017). Vitamin D and multiple sclerosis. An update. In: Multiple sclerosis and related disorders 14, S. 35–45. DOI: 10.1016/j.msard.2017.03.014
  33. Burton JM, Kimball S et al (2010). A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. In: Neurology 74 (23), S. 1852–1859. DOI: 10.1212/WNL.0b013e3181e1cec2
  34. Stewart N, Simpson S et al (2012). Interferon-  and serum 25-hydroxyvitamin D interact to modulate relapse risk in MS. Neurology, 79(3), 254–260. DOI: 10.1212/wnl.0b013e31825fded9
  35. Laursen JH, Sondergaard HB et al (2016). Vitamin D supplementation reduces relapse rate in relapsing-remitting multiple sclerosis patients treated with natalizumab. In: Multiple sclerosis and related disorders 10, S. 169–173. DOI: 10.1016/j.msard.2016.10.005
  36. Bjorksten F, Suoniemi I (1976). Dependence of immediate hypersensitivity on the month of birth. Clinical Experimental Allergy, 6(2), 165-171. DOI:10.1111/j.1365-2222.1976.tb01894.x
  37. Matsui T, Tanaka K et al (2019). Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergology International, 68(2), 172-177. DOI:10.1016/j.alit.2018.12.003
  38. Sharief S, Jariwala S et al (2011). Vitamin D levels and food and environmental allergies in the United States: Results from the National Health and Nutrition Examination Survey 2005-2006. Journal of Allergy and Clinical Immunology, 127(5), 1195-1202. DOI:10.1016/j.jaci.2011.01.017
  39. Wu D et al. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Frontiers in Immunology, vol. 9, 2019, DOI:10.3389/fimmu.2018.03160
  40. Uwe Gröber, Orthomolekulare Medizin – Ein Leitfaden für Apotheker und Ärzte, ISBN 978-3804719279, Wissenschaftliche Verlagsgesellschaft, Stuttgart 2015
  41. Oliveira L et al. Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases. Mediators of Inflammation, vol. 2018, 2018, pp. 1–17., DOI:10.1155/2018/3067126
  42. Carr A, Maggini S. Vitamin C and Immune Function. Nutrients, vol. 9, no. 11, 2017, p. 1211., DOI:10.3390/nu9111211
  43. Wang Y, Washko W et al (1996). Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Retrieved from https://www.pnas.org/content/93/8/3704
  44. Cheng RZ. Can Early and High Intravenous Dose of Vitamin C Prevent and Treat Coronavirus Disease 2019 (COVID-19)? Medicine in Drug Discovery, vol. 5, 2020, p. 100028., DOI:10.1016/j.medidd.2020.100028
  45. Avery J, Hoffmann P. Selenium, Selenoproteins, and Immunity. Nutrients, vol. 10, no. 9, 2018, p. 1203., DOI:10.3390/nu10091203
  46. Gammoh NZ, Rink L. Zinc in Infection and Inflammation. Nutrients, vol. 9, no. 6, 2017, p. 624., DOI:10.3390/nu9060624
  47. Calabrese LH. Cytokine Storm and the Prospects for Immunotherapy with COVID-19. Cleveland Clinic Journal of Medicine, 2020, p. ccc008., DOI:10.3949/ccjm.87a.ccc008
  48. Miyajima M. Amino Acids: Key Sources for Immunometabolites and Immunotransmitters.  International Immunology, 2020, DOI:10.1093/intimm/dxaa019
  49. Shah AM et al. Glutamine Metabolism and Its Role in Immunity, a Comprehensive Review. Animals, vol. 10, no. 2, 2020, p. 326., DOI:10.3390/ani10020326

Titelbild 6.1.1: Ria Sopala, www. pixabay.com

Abb. 1: nach Nr. 1, mit freundlicher Genehmigung von Hevert GmbH

Titelbild 6.1.2: Colin Behrens, www.pixabay.com

Kapitel 6.2 – Vitamin D und Skelett und Knochen

  1. Gani LU, How CH (2015). PILL Series. Vitamin D deficiency. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545131/
  2. Dawson-Hughes B, Harris S et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. The New England journal of medicine 1997;337(10):670–6
  3. Wacker M, Holick M F (2013). Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571641/
  4. Kuwabara A, Tanaka K (2015). The role of gastro-intestinal tract in the calcium absorption. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26503863
  5. Bronner F (2002). Mechanisms of intestinal calcium absorption. Journal of Cellular Biochemistry, 88(2), 387–393. DOI: 10.1002/jcb.10330
  6. Christakos . (2012). Recent advances in our understanding of 1,25-dihydroxyvitamin D3 regulation of intestinal calcium absorption. Archives of Biochemistry and Biophysics, 523(1), 73–76. DOI: 10.1016/j.abb.2011.12.020
  7. Heaney RP, Dowell MS et al (2003). Calcium Absorption Varies within the Reference Range for Serum 25-Hydroxyvitamin D. Journal of the American College of Nutrition, 22(2), 142–146. DOI: 10.1080/07315724.2003.10719287
  8. Ginde AA, Wolfe P et al (2012). Defining vitamin D status by secondary hyperparathyroidism in the U.S. population. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21606669.
  9. Domarus C, Brown J et al (2011). How much vitamin D do we need for skeletal health? In: Clinical orthopaedics and related research 469 (11), S. 3127–3133
  10. Göthel C (2020). Entwicklung der Epidemiologie und der jahreszeitlichen Abhängigkeit des Vitamin-D-Status in Deutschland in den Jahren 2007 bis 2019. Retrieved June 25, 2020, from https://tore.tuhh.de/handle/11420/6400
  11. Björn B et al. Vitamin D Deficiency Induces Early Signs of Aging in Human Bone, Increasing the Risk of Fracture, Science Translational Medicine, 10 July 2013, 5/193, p. 193ra88

Titelbild: StockSnap, www.pixabay.com

Kapitel 6.3 – Vitamin D und Sport und Muskeln

  1. Zhang L, Quan M et al (2019). Effect of vitamin D supplementation on upper and lower limb muscle strength and muscle power in athletes: A meta-analysis. In: PloS one 14 (4), e0215826. DOI: 10.1371/journal.pone.0215826
  2. Montenegro KR, Cruzat V et al (2019). Mechanisms of vitamin D action in skeletal muscle. In: Nutrition Research Reviews, S. 1–13. DOI: 10.1017/S0954422419000064
  3. Dzik KP, Kaczor JJ (2019). Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. In: European journal of applied physiology 119 (4), S. 825–839. DOI: 10.1007/s00421-019-04104-x
  4. Aydın CG, Dinçel YM et al (2019). The effects of indoor and outdoor sports participation and seasonal changes on vitamin D levels in athletes. In: SAGE open medicine 7, 2050312119837480. DOI: 10.1177/2050312119837480
  5. Constantini NW, Arieli R et al (2010). High Prevalence of Vitamin D Insufficiency in Athletes and Dancers. Clinical Journal of Sport Medicine, 20(5), 368–371. DOI: 10.1097/jsm.0b013e3181f207f2
  6. Shuler FD, Wingate MK et al (2012). Sports Health Benefits of Vitamin D. Sports Health: A Multidisciplinary Approach, 4(6), 496–501. DOI: 10.1177/1941738112461621
  7. Forney LA, Earnest CP et al (2014). Vitamin D Status, Body Composition, and Fitness Measures in College-Aged Students. Journal of Strength and Conditioning Research, 28(3), 814–824. DOI: 10.1519/jsc.0b013e3182a35ed0
  8. Erem S (2019). Anabolic effects of vitamin D and magnesium in aging bone. In: The Journal of Steroid Biochemistry and Molecular Biology 193, S. 105400. DOI: 10.1016/j.jsbmb.2019.105400
  9. Reddy P, Edwards LR (2019). Magnesium Supplementation in Vitamin D Deficiency. In: American journal of therapeutics 26 (1), e124-e132. DOI: 10.1097/MJT.0000000000000538
  10. Trummer C, Schwetz V et al (2017). Effects of Vitamin D Supplementation on IGF-1 and Calcitriol: A Randomized-Controlled Trial. In: Nutrients 9 (6). DOI: 10.3390/nu9060623
  11. Gogulothu R, Nagar D et al (2019). Disrupted expression of genes essential for skeletal muscle fibre integrity and energy metabolism in Vitamin D deficient rats. The Journal of Steroid Biochemistry and Molecular Biology, 105525. DOI: 10.1016/j.jsbmb.2019.105525

Titelbild: Gentrit Sylejmani, www.unsplash.com

Kapitel 6.4 – Metabolisches Syndrom und Fettleber

  1. Moukayed M, Grant WB (2019). Linking the metabolic syndrome and obesity with vitamin D status: risks and opportunities for improving cardiometabolic health and well-being. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 12, 1437–1447. DOI: 10.2147/dmso.s176933
  2. Thomas GN, Bosch JA et al (2012). Vitamin D Levels Predict All-Cause and Cardiovascular Disease Mortality in Subjects With the Metabolic Syndrome: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Diabetes Care, 35(5), 1158–1164. DOI: 10.2337/dc11-1714
  3. Pan G-T, Guo J-F et al (2016). Vitamin D Deficiency in Relation to the Risk of Metabolic Syndrome in Middle-Aged and Elderly Patients with Type 2 Diabetes Mellitus. Journal of Nutritional Science and Vitaminology, 62(4), 213–219. DOI: 10.3177/jnsv.62.213
  4. Akter S, Eguchi M et al (2017). Serum 25-hydroxyvitamin D and metabolic syndrome in a Japanese working population: The Furukawa Nutrition and Health Study. Nutrition, 36, 26–32. DOI: 10.1016/j.nut.2016.02.024
  5. Ganji V, Sukik A et al (2019). Serum vitamin D concentrations are inversely related to prevalence of metabolic syndrome in Qatari women. BioFactors. DOI: 10.1002/biof.1572
  6. Schmitt EB, Nahas-Neto J et al (2018). Vitamin D deficiency is associated with metabolic syndrome in postmenopausal women. Maturitas, 107, 97–102. DOI: 10.1016/j.maturitas.2017.10.011
  7. Ganji V, Zhang X et al (2011). Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001–2006. The American Journal of Clinical Nutrition, 94(1), 225–233. DOI: 10.3945/ajcn.111.013516
  8. Ilaria C, Agata F et al (2017). Vitamin D Supplementation and Non-Alcoholic Fatty Liver Disease: Present and Future. Retrieved from https://www.mdpi.com/2072-6643/9/9/1015/htm
  9. Chen L-W, Chien, C-H et al (2019). Low vitamin D level was associated with metabolic syndrome and high leptin level in subjects with nonalcoholic fatty liver disease: a community-based study. BMC Gastroenterology, 19(1). DOI: 10.1186/s12876-019-1040-y
  10. Zhu C-G, Liu Y-X et al (2017). Active form of vitamin D ameliorates non-alcoholic fatty liver disease by alleviating oxidative stress in a high-fat diet rat model. Endocrine Journal, 64(7), 663–673. DOI: 10.1507/endocrj.ej16-0542
  11. Ma M, Long Q et al (2019). Active vitamin D impedes the progression of non-alcoholic fatty liver disease by inhibiting cell senescence in a rat model. Clinics and Research in Hepatology and Gastroenterology. DOI: 10.1016/j.clinre.2019.10.007
  12. Liu Y, Wang M et al (2020). Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. Life Sciences, 241, 117086. DOI: 10.1016/j.lfs.2019.117086

Titelbild: (Joenomias) Menno de Jong, www.pixabay.com

Kapitel 6.5 – Die Bedeutung von Vitamin D bei Zuckererkrankungen

  1. Ford ES, Bergmann MM et al (2009). Healthy Living Is the Best Revenge. Archives of Internal Medicine, 169(15), 1355. DOI: 10.1001/archinternmed.2009.237
  2. Soltesz G, Patterson CC, Dahlquist G, EURODIAB Study Group. Worldwide childhood type 1 diabetes incidence–what can we learn from epidemiology? Pediatric diabetes 2007;8(6):6–14
  3. Cadario F, Ricotti R et al (2018). Administration of vitamin D and high dose of omega 3 to sustain remission of type 1 diabetes. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29424911
  4. Hyppönen E, Läärä E et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001;358(9292):1500–3
  5. Zipitis CS, Akobeng AK. Vitamin D Supplementation in Early Childhood and Risk of Type 1 Diabetes: a Systematic Review and Meta-analysis. Archives of Disease in Childhood – Fetal and Neonatal Edition 2008;93(6):512–7
  6. Tuomilehto J et al. Genetic predisposition to obesity and lifestyle factors–the combined analyses of twenty-six known BMI-and fourteen known waist: hip ratio (WHR)-associated variants, Diabetologia 199; 42: 655 – 660; Ehehatt S., Neu A et al. for the DIARY Group: Diabetologie & Stoffwechsel 2006; 1
  7. Palomer X, González-Clemente JM et al. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes, obesity & metabolism 2008;10(2):185–97
  8. Alemzadeh R, Kichler J et al. Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism: clinical and experimental 2008;57(2):183–91
  9. Martins D, Wolf M et al. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey. Archives of internal medicine 2007;167(11):1159–65
  10. Pittas AG, Lau J et al. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. The Journal of clinical endocrinology and metabolism 2007;92(6):2017–29
  11. Hintzpeter B, Mensink GB et al. Vitamin D status and health correlates among German adults. European journal of clinical nutrition 2007
  12. Sugden JA, Davies JI et al. Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels. Diabetic medicine: a journal of the British Diabetic Association 2008;25(3):320–5
  13. Hafez M, Musa N et al (2017). Vitamin D status in Egyptian children with type 1 diabetes and the role of vitamin D replacement in glycemic control. In: Journal of pediatric endocrinology & metabolism. JPEM 30 (4), S. 389–394. DOI: 10.1515/jpem-2016-0292
  14. Verburg PE, Tucker G et al (2016). Seasonality of gestational diabetes mellitus. A South Australian population study. In: BMJ open diabetes research & care 4 (1), e000286. DOI: 10.1136/bmjdrc-2016-000286
  15. Zhang Y, Gong Y et al (2017). Vitamin D and gestational diabetes mellitus. A systematic review based on data free of Hawthorne effect. In: BJOG : an international journal of obstetrics and gynaecology. DOI: 10.1111/1471-0528.15060
  16. Gellert S, Bitterlich N et al (2017). Higher prevalence of vitamin D deficiency in German pregnant women compared to non-pregnant women. In: Archives of gynecology and obstetrics 296 (1), S. 43–51. DOI: 10.1007/s00404-017-4398-5
  17. Tamayo T, Rathmann W et al (2016). Prevalence of gestational diabetes and risk of complications before and after initiation of a general systematic two-step screening strategy in Germany (2012–2014). Diabetes Research and Clinical Practice, 115, 1–8. DOI: 10.1016/j.diabres.2016.03.001
  18. Park SK, Garland CF et al (2018). Plasma 25-hydroxyvitamin D concentration and risk of type 2 diabetes and pre-diabetes: 12-year cohort study. Plos One, 13(4). DOI: 10.1371/journal.pone.0193070
  19. Mirhosseini N, Vatanparast H et al (2017). The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control in Diabetic Patients. A Meta-Analysis. In: The Journal of clinical endocrinology and metabolism 102 (9), S. 3097–3110. DOI: 10.1210/jc.2017-01024
  20. Ekmekcioglu C, Haluza D, Kundi, M (2017). 25-Hydroxyvitamin D Status and Risk for Colorectal Cancer and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Epidemiological Studies. International Journal of Environmental Research and Public Health, 14(2), 127. DOI: 10.3390/ijerph14020127
  21. Tang H, Li D et al (2018). Effects of Vitamin D Supplementation on Glucose and Insulin Homeostasis and Incident Diabetes among Nondiabetic Adults: A Meta-Analysis of Randomized Controlled Trials. International Journal of Endocrinology, 2018, 1–9. DOI: 10.1155/2018/7908764
  22. Baggerly LL, Holick MF et al (2016). Incidence rate of type 2 diabetes is 50% lower in GrassrootsHealth cohort with median serum 25-hydroxyvitamin D of 41 ng/ml than in NHANES cohort with median of 22 ng/ml. In: The Journal of steroid biochemistry and molecular biology 155 (Pt B), S. 239–244. DOI: 10.1016/j.jsbmb.2015.06.013

Unter folgendem QR-Code bzw. Webadresse können Sie den im März 2020 stattgefundenen Kongress zum Thema Diabetes streamen oder downloaden:

https://digitalewelt.spitzen-praevention.com/

Titelbild: Leo_65, www.pixabay.com

Kapitel 6.6 – Vitamin D und pulmonale Erkrankungen

  1. Gesundheitsreport 2018 zu Arbeitsunfähigkeiten, zuletzt geprüft am 19.02.2019
  2. Bergman P, Lindh AU et al (2013). Vitamin D and Respiratory Tract Infections. A Systematic Review and Meta-Analysis of Randomized Controlled Trials. In: PloS one 8 (6), e65835. DOI: 10.1371/journal.pone.0065835
  3. Ramos-Martínez E, López-Vancell MR et al (2018). Reduction of respiratory infections in asthma patients supplemented with vitamin D is related to increased serum IL-10 and IFNγ levels and cathelicidin expression. In: Cytokine 108, S. 239–246. DOI: 10.1016/j.cyto.2018.01.001
  4. Zhu B, Xiao C et al (2015). Vitamin D deficiency is associated with the severity of COPD. A systematic review and meta-analysis. In: International journal of chronic obstructive pulmonary disease 10, S. 1907–1916. DOI: 10.2147/COPD.S89763
  5. Færk G, Çolak Y et al (2018). Low concentrations of 25-hydroxyvitamin D and long-term prognosis of COPD. A prospective cohort study. In: European journal of epidemiology 33 (6), S. 567–577. DOI: 10.1007/s10654-018-0393-9
  6. Malinovschi A, Masoero M et al (2014). Severe vitamin D deficiency is associated with frequent exacerbations and hospitalization in COPD patients. In: Respiratory research 15, S. 131. DOI: 10.1186/s12931-014-0131-0
  7. Botros RM, Abo Elyazed S et al (2018). Vitamin D Status in Hospitalized Chronically Ill Patients. In: Journal of the American College of Nutrition, S. 1–5. DOI: 10.1080/07315724.2018.1446194
  8. Khan DM, Ullah A et al (2017). Role of Vitamin D in reducing number of acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) patients. Pakistan Journal of Medical Sciences, 33(3). DOI: 10.12669/pjms.333.12397
  9. Pourrashid MH, Dastan F et al (2018). Role of Vitamin D Replacement on Health Related Quality of Life in Hospitalized Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985196/
  10. Pfeffer PE, Hawrylowicz CM (2018). Vitamin D in Asthma. Chest, 153(5), 1229-1239. DOI:10.1016/j.chest.2017.09.005
  11. Martineau A, Takeda A et al (2015). Vitamin D for the management of asthma. Cochrane Database of Systematic Reviews. DOI:10.1002/14651858.cd01151
  12. Ginde AA, Mansbach J et al (2009). Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. In: Archives of internal medicine 169 (4), S. 384–390. DOI: 10.1001/archinternmed.2008.560
  13. Camargo CA, Ganmaa D et al (2012). Randomized Trial of Vitamin D Supplementation and Risk of Acute Respiratory Infection in Mongolia. Pediatrics, 130(3). DOI: 10.1542/peds.2011-3029
  14. Urashima M, Segawa T et al (2010). Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. In: The American journal of clinical nutrition 91 (5), S. 1255–1260. DOI: 10.3945/ajcn.2009.29094
  15. Teutemacher H, Trötschler H et al. Pneumologie, Substitution von Vitamin D bei Patienten mit Asthma und COPD  – Vitamin D-Update 2011, Berlin – https://repository.publisso.de/resource/frl:4169394-1/data
  16. Krishnan E, Ponnusamy V, Sekar SP (2017). Trial of vitamin D supplementation to prevent asthma exacerbation in children. International Journal of Research in Medical Sciences, 5(6), 2734. DOI: 10.18203/2320-6012.ijrms20172479
  17. Martineau AR, Jolliffe DA et al (2017). Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. In: BMJ (Clinical research ed.) 356, i6583. DOI: 10.1136/bmj.i6583
  18. Hollis BW, Wagner CL (2013). The Role of the Parent Compound Vitamin D with Respect to Metabolism and Function: Why Clinical Dose Intervals Can Affect Clinical Outcomes. In: The Journal of clinical endocrinology and metabolism 98 (12), S. 4619–4628. DOI: 10.1210/jc.2013-2653
  19. Manson JAE, Cook NR et al for the VITAL Research Group (2019). Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. In: The New England Journal of Medicine  2019; 380:33-44. DOI: 10.1056/NEJMoa1809944
  20. Khalid AN, Ladha KS et al (2015). Association of Vitamin D Status and Acute Rhinosinusitis. Medicine, 94(40). DOI:10.1097/md.0000000000001447
  21. Agostoni C, Bresson JL et al. Vitamin D and contribution to the normal function of the immune system. Evaluation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006 (2015). In: EFSA Journal 13 (7), S. 4182, zuletzt geprüft am 15.06.2020

Titelbild: kalhh, www.pixabay.com

Kapitel 6.7 – Neurologie und psychiatrische Erkrankungen

  1. Stumpf WE, Privette TH. The steroid hormone of sunlight soltriol (vitamin D) as a seasonal regulator of biological activities and photoperiodic rhythms. The Journal of steroid biochemistry and molecular biology 1991;39(2):283–9
  2. Nataf S, Garcion E et al. 1,25 Dihydroxyvitamin D3 exerts regional effects in the central nervous system during experimental allergic encephalomyelitis. Journal of neuropathology and experimental neurology 1996;55(8):904–14
  3. Bemiss CJ, Mahon BD et al. Interleukin-2 is one of the targets of 1,25-dihydroxyvitamin D3 in the immune system. Archives of biochemistry and biophysics 2002;402:249–54
  4. Garcion E, Sindji L et al. Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system. Acta neuropathologica 2003;105(5):438–48
  5. Shinpo K, Kikuchi S et al. Effect of 1,25-dihydroxyvitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine. Journal of Neuroscience Research 200;62:374–82
  6. Tetich M, Leśkiewicz M et al. The third multidisciplinary conference on drug research, Piła 2002. Effects of 1alpha,25-dihydroxyvitamin D3 and some putative steroid neuroprotective agents on the hydrogen peroxide-induced damage in neuroblastoma-glioma hybrid NG108-15 cells. Acta poloniae pharmaceutica 2003;60(5):351–5
  7. Kauer H. Vitamin D in Immunologie und Onkologie – Eine Literaturstudie (Dissertation). München: LMU München; 09.02.2007
  8. Bivona G, Gambino CM et al (2019). Vitamin D and the nervous system. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31142227
  9. Kim J-E, Cho K-O (2019). Functional Nutrients for Epilepsy. Nutrients, 11(6), 1309. DOI: 10.3390/nu11061309
  10. Teagarden DL, Meador KJ, Loring DW (2014). Low vitamin D levels are common in patients with epilepsy. Epilepsy Research, 108(8), 1352–1356. DOI: 10.1016/j.eplepsyres.2014.06.008
  11. Chaudhuri JR, Mridula KR et al (2017). Association of 25-Hydroxyvitamin D Deficiency in Pediatric Epileptic Patients. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493830/
  12. Offermann G, Pinto V, Kruse R (1979). Antiepileptic Drugs and Vitamin D Supplementation. Epilepsia, 20(1), 3–15. DOI: 10.1111/j.1528-1157.1979.tb04771.x
  13. Shaikh AS, Guo X (2018). The Impact of Antiepileptic Drugs on Vitamin Levels in Epileptic Patients. Current Pharmaceutical Biotechnology, 19(8), 674–681. DOI: 10.2174/1389201019666180816104716
  14. Christiansen C, Rodbro P, Sjo O (1974). Anticonvulsant Action of Vitamin D in Epileptic Patients? A Controlled Pilot Study. Bmj, 2(5913), 258–259. DOI: 10.1136/bmj.2.5913.258
  15. Holló A, Clemens Z et al (2012). Correction of vitamin D deficiency improves seizure control in epilepsy: A pilot study. Epilepsy & Behavior, 24(1), 131–133. DOI: 10.1016/j.yebeh.2012.03.011
  16. Tombini M, Palermo A et al (2018). Calcium metabolism serum markers in adult patients with epilepsy and the effect of vitamin D supplementation on seizure control. Seizure, 58, 75–81. DOI: 10.1016/j.seizure.2018.04.008
  17. Degiorgio CM, Hertling D et al (2019). Safety and tolerability of Vitamin D3 5000 IU/day in epilepsy. Epilepsy & Behavior, 94, 195–197. DOI: 10.1016/j.yebeh.2019.03.001
  18. Kogan MD, Vladutiu CJ et al (2018). The Prevalence of Parent-Reported Autism Spectrum Disorder Among US Children. Pediatrics, 142(6). DOI: 10.1542/peds.2017-4161
  19. Vinkhuyzen AAE, Eyles DW et al (2018). Gestational vitamin D deficiency and autism spectrum disorder: BJPsych Open. Retrieved from https://www.cambridge.org/core/journals/bjpsych-open/article/gestational-vitamin-d-deficiency-and-autism-spectrum-disorder/339D73DC98FF9C2672A9A099D4F0F4F6
  20. Cannell JJ (2017). Vitamin D and autism, what’s new? Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28217829.
  21. Saad K, Abdel‐Rahman A et al (2019). Retraction: Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. Journal of Child Psychology and Psychiatry, 60(6), 711–711. DOI: 10.1111/jcpp.13076
  22. Hollis BW, Wagner CL (2012). Vitamin D and Pregnancy: Skeletal Effects, Nonskeletal Effects, and Birth Outcomes. Calcified Tissue International, 92(2), 128–139. DOI: 10.1007/s00223-012-9607-4
  23. Mazahery H, Conlon CA et al (2019). A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder. The Journal of Steroid Biochemistry and Molecular Biology, 187, 9–16. DOI: 10.1016/j.jsbmb.2018.10.017
  24. Yi L-F, Wen H-X et al (2017). Cardiac autonomic nerve function in obese school-age children. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28506342
  25. Canpolat U, Özcan F et al (2014). Impaired Cardiac Autonomic Functions in Apparently Healthy Subjects with Vitamin D Deficiency. Annals of Noninvasive Electrocardiology, 20(4), 378–385. DOI: 10.1111/anec.12233
  26. Qiu M, Wen H-X et al (2018). Effect of vitamin D deficiency on cardiac autonomic nerve function in obese pre-school children. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30210029
  27. Dogdus M, Burhan S et al (2019). Cardiac autonomic dysfunctions are recovered with vitamin D replacement in apparently healthy individuals with vitamin D deficiency. Annals of Noninvasive Electrocardiology, 24(6). DOI: 10.1111/anec.12677
  28. Tønnesen R, Schwarz P et al (2018). Modulation of the sympathetic nervous system in youngsters by vitamin-D supplementation. Physiological Reports, 6(7). DOI: 10.14814/phy2.13635
  29. Psychoreport 2019: Dreimal mehr Fehltage als 1997. (n.d.). Retrieved from https://www.dak.de/dak/bundesthemen/dak-psychoreport-2019-dreimal-mehr-fehltage-als-1997-2125486.html
  30. Rosen L, Knudson KH, Fancher P. Prevalence of seasonal affective disorder among U.S. Army soldiers in Alaska. Military medicine 2002;167(7):581–4
  31. Mersch PP, Middendorp HM et al. The prevalence of seasonal affective disorder in The Netherlands: a prospective and retrospective study of seasonal mood variation in the general population. Biological Psychiatry 1999;45(8):1013–22
  32. Mersch PP, Middendorp HM et al. Seasonal affective disorder and latitude: a review of the literature. Journal of affective disorders 1999;53(1):35–48
  33. Vieth R, Kimball S et al. Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients. Nutrition Journal 2004;3:8
  34. Wang J, Liu N et al (2018). Association between vitamin D deficiency and antepartum and postpartum depression: A systematic review and meta-analysis of  longitudinal studies. Archives of Gynecology and Obstetrics, 298, 1045–1059(2018)
  35. Spedding, Simon (2014). Vitamin D and depression. A systematic review and meta-analysis comparing studies with and without biological flaws. In: Nutrients 6 (4), S. 1501–1518. DOI: 10.3390/nu6041501
  36. McGrath J. Hypothesis: is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophrenia Research 1999;40(3):173-177(5)
  37. McGrath J, Saari K et al. Vitamin D supplementation during the first year of life and risk of schizophrenia: a Finnish birth cohort study. Schizophrenia Research 2004;67(2-3):237–45
  38. O’Loan J, Eyles DW, Kesby J, Ko P, McGrath JJ, Burne TH. Vitamin D deficiency during various stages of pregnancy in the rat; its impact on development and behaviour in adult offspring. Psychoneuroendocrinology 2007;32(3):227–34.
  39. Cui X, McGrath JJ et al. Maternal vitamin D depletion alters neurogenesis in the developing rat brain. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 2007;25(4):227–32
  40. Kocovska E, Gaughran F et al (2017). Vitamin-D Deficiency As a Potential Environmental Risk Factor in Multiple Sclerosis, Schizophrenia, and Autism. In: Frontiers in psychiatry 8, S. 47. DOI: 10.3389/fpsyt.2017.00047

Titelbild: Sabine Zierer, www.pixabay.com

Abb. 3: DAK-Report 2018, siehe Nr. 29

Kapitel 7.1 – Erkrankungen des Herzens und der Gefäße

  1. Michos ED, Melamed ML. Vitamin D and cardiovascular disease risk. Current opinion in clinical nutrition and metabolic care 2008;11(1):7–12
  2. Abdi-Ali A, Nicholl DDm et al (2013). 25-Hydroxyvitamin D status, arterial stiffness and the renin–angiotensin system in healthy humans. Clinical and Experimental Hypertension, 36(6), 386–391. DOI: 10.3109/10641963.2013.827705
  3. Sunbul M (2016). Arterial stiffness parameters associated with vitamin D deficiency and supplementation in patients with normal cardiac functions. Turk Kardiyoloji Dernegi Ars. 2016; 44(4): 281-288. DOI: 10.5543/tkda.2015.93237
  4. Gillor A, Groneck P et al. Congestive heart failure in rickets caused by vitamin D deficiency. Monatsschrift Kinderheilkunde: Organ der Deutschen Gesellschaft für Kinderheilkunde 1989;13(2):108–10
  5. Brunvand L, Hågå P et al. Congestive heart failure caused by vitamin D deficiency? Acta paediatrica (Oslo, Norway : 1992) 1995;84(1):106–8
  6. Wang TJ, Pencina MJ et al. Vitamin D Deficiency and Risk of Cardiovascular Disease. Circulation 2008;117(4):503–11
  7. Crowe FL, Thayakaran R et al (2019). Non-linear associations of 25-hydroxyvitamin D concentrations with risk of cardiovascular disease and all-cause mortality: Results from The Health Improvement Network (THIN) database. The Journal of Steroid Biochemistry and Molecular Biology, 195, 105480. DOI: 10.1016/j.jsbmb.2019.105480
  8. Gholami F, Moradi G et al (2019). The association between circulating 25-hydroxyvitamin D and cardiovascular diseases: a meta-analysis of prospective cohort studies. BMC Cardiovascular Disorders, 19(1). DOI: 10.1186/s12872-019-1236-7
  9. Forman JP, Giovannucci E et al. Plasma 25-Hydroxyvitamin D Levels and Risk of Incident Hypertension. Hypertension 2007;49(5):1063–9
  10. Pfeifer M, Begerow B et al. Effects of a Short-Term Vitamin D3 and Calcium Supplementation on Blood Pressure and Parathyroid Hormone Levels in Elderly Women. The Journal of Clinical Endocrinology & Metabolism 2001;86(4):1633–7
  11. Sugden JA, Davies JI et al. Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels. Diabetic medicine: a journal of the British Diabetic Association 2008;25(3):320–5
  12. Carlin AM, Rao DS et al. Effect of gastric bypass surgery on vitamin D nutritional status. Surgery for obesity and related diseases: official journal of the American Society for Bariatric Surgery 2006;2(6):638–42
  13. Carlin AM, Yager KM, Rao DS. Vitamin D depletion impairs hypertension resolution after Roux-en-Y gastric bypass. American journal of surgery 2008;195(3):349–52
  14. Melamed ML, Muntner P et al. Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: results from NHANES 2001 to 2004. Arteriosclerosis, thrombosis, and vascular biology 2008;28(6):1179–85
  15. Raed A, Bhagatwala J et al. (2017). Dose responses of vitamin D3 supplementation on arterial stiffness in overweight African Americans with vitamin D deficiency. A placebo controlled randomized trial. In: PloS one 12 (12), e0188424. DOI: 10.1371/journal.pone.0188424
  16. Shirvani A, Holick MF et al (2019). Disassociation of Vitamin D’s Calcemic Activity and Non-calcemic Genomic Activity and Individual Responsiveness: A Randomized Controlled Double-Blind Clinical Trial. Scientific Reports, 9(1). DOI: 10.1038/s41598-019-53864-1
  17. Yuan J, Jia P et al (2019). Vitamin D deficiency is associated with risk of developing peripheral arterial disease in type 2 diabetic patients. BMC Cardiovascular Disorders, 19(1). DOI:10.1186/s12872-019-1125-0
  18. Rai V, Agrawal DK (2017). Role of Vitamin D in Cardiovascular Diseases. In: Endocrinology and metabolism clinics of North America 46 (4), S. 1039–1059. DOI: 10.1016/j.ecl.2017.07.009
  19. Giovannucci E, Hollis BW et al. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Archives of internal medicine 2008;168(11):1174–80
  20. Dobnig H, Pilz S et al. Independent Association of Low Serum 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D Levels With All-Cause and Cardiovascular Mortality. Archives of internal medicine 2008;168(12):1340–9
  21. Zittermann A, Götting C et al. Poor outcome in end-stage heart failure patients with low circulating calcitriol levels. European journal of heart failure 2008;10(3):321–7
  22. Hsia J, Heiss G et al. Women’s Health Initiative Investigators. Calcium/vitamin D supplementation and cardiovascular eve. Circulation 2007;115(7):846–54
  23. Schleithoff S, Zittermann A et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. American Journal of Clinical Nutrition 2006;83(5):754–9
  24. Saponaro F, Saba A et al (2018). Vitamin D measurement and effect on outcome in a cohort of patients with heart failure. Endocrine Connections, 7(9), 957–964. DOI: 10.1530/ec-18-0207
  25. Gotsman I, Shauer A et al (2012). Vitamin D deficiency is a predictor of reduced survival in patients with heart failure; vitamin D supplementation improves outcome. European Journal of Heart Failure, 14(4), 357–366. DOI: 10.1093/eurjhf/hfr175
  26. Nolte K, Herrmann-Lingen C et al (2019). Vitamin D deficiency in patients with diastolic dysfunction or heart failure with preserved ejection fraction. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30784226
  27. Al-Khalidi B, Kimball SM et al (2017). Erratum to: Standardized serum 25-hydroxyvitamin D concentrations are inversely associated with cardiometabolic disease in U.S. adults: a cross-sectional analysis of NHANES, 2001–2010. Nutrition Journal, 16(1). DOI: 10.1186/s12937-017-0251-8
  28. Censani M, Hammad HT et al (2018). Vitamin D Deficiency Associated With Markers of Cardiovascular Disease in Children With Obesity. In: Global pediatric health 5, 2333794X17751773. DOI: 10.1177/2333794X17751773
  29. Skaaby T, Thuesen BH et al (2017). Vitamin D, Cardiovascular Disease and Risk Factors. In: Advances in experimental medicine and biology 996, S. 221–230. DOI: 10.1007/978-3-319-56017-5_18
  30. Al Mheid I, Quyyumi AA (2017). Vitamin D and Cardiovascular Disease. Controversy Unresolved. In: Journal of the American College of Cardiology 70 (1), S. 89–100. DOI: 10.1016/j.jacc.2017.05.031

Titelbild: Gerd Altmann, www.pixabay.com

Kapitel 7.2 – Onkologische Erkrankungen

  1. Pereira F, Larriba MJ, Muñoz A (2012). Vitamin D and colon cancer. Endocrine-Related Cancer, 19(3). DOI: 10.1530/erc-11-0388
  2. Wu X, Hu W et al  (2019). Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharmaceutica Sinica B, 9(2), 203-219. DOI:10.1016/j.apsb.2018.09.002
  3. Robien K, Cutler GJ, Lazovich D. Vitamin D intake and breast cancer risk in postmenopausal women: the Iowa Women’s Health Study. Cancer causes & control : CCC 2007;18(7):775–82
  4. Lin J, Manson JE et al (2007). Intakes of calcium and vitamin D and breast cancer risk in women. Archives of internal medicine 2007;167(10):1050–9
  5. Knight JA, Lesosky M et al (2007). Vitamin D and Reduced Risk of Breast Cancer: A Population-Based Case-Control Study. Cancer Epidemiology Biomarkers & Prevention 2007;16(3):422–9
  6. John EM, Schwartz GG et al (2007). Sun Exposure, Vitamin D Receptor Gene Polymorphisms, and Breast Cancer Risk in a Multiethnic Population. American Journal of Epidemiology 2007;166(12):1409–19
  7. Abbas S, Linseisen J et al (2008). Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer–results of a large case-control study. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17974532
  8. Goodwin PJ, Ennis M et al (2008). Frequency of vitamin D (Vit D) deficiency at breast cancer (BC) diagnosis and association with risk of distant recurrence and death in a prospective cohort study of T1-3, N0-1, M0 BC; 2008
  9. Madden JM, Murphy L et al (2018). De novo vitamin D supplement use post-diagnosis is associated with breast cancer survival. Breast Cancer Research and Treatment, 172(1), 179-190. DOI:10.1007/s10549-018-4896-6
  10. Zhu K, Knuiman M et al (2019). Lower serum 25-hydroxyvitamin D is associated with colorectal and breast cancer, but not overall cancer risk: A 20-year cohort study. Nutrition Research, 67, 100-107. DOI:10.1016/j.nutres.2019.03.010
  11. Song D, Deng Y et al (2019). Vitamin D intake, blood vitamin D levels, and the risk of breast cancer: a dose-response meta-analysis of observational studies. Aging, 11(24), 12708–12732. DOI: 10.18632/aging.102597331–347. DOI: 10.4161/derm.26738
  12. Gorham ED, Garland CF et al (2007). Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. In: American journal of preventive medicine 32 (3), S. 210–216. DOI: 10.1016/j.amepre.2006.11.004
  13. Freedman DM, Looker AC et al (2007). Prospective study of serum vitamin D and cancer mortality in the United States. In: Journal of the National Cancer Institute 99 (21), S. 1594–1602. DOI: 10.1093/jnci/djm204
  14. Ekmekcioglu C, Haluza D, Kundi M (2017). 25-Hydroxyvitamin D Status and Risk for Colorectal Cancer and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Epidemiological Studies. International Journal of Environmental Research and Public Health, 14(2), 127. DOI: 10.3390/ijerph14020127
  15. Garland CF, Gorham ED (2017). Dose-response of serum 25-hydroxyvitamin D in association with risk of colorectal cancer. A meta-analysis. In: The Journal of steroid biochemistry and molecular biology 168, S. 1–8. DOI: 10.1016/j.jsbmb.2016.12.003
  16. Maalmi H, Walter V et al (2017). Relationship of very low serum 25-hydroxyvitamin D3 levels with long-term survival in a large cohort of colorectal cancer patients from Germany. European Journal of Epidemiology, 32(11), 961-971. DOI:10.1007/s10654-017-0298-z
  17. Lappe JM, Travers-Gustafson D et al (2007). Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. In: The American journal of clinical nutrition 85 (6), S. 1586–1591
  18. Uwe Gröber, Jörg Spitz, Jörg Reichrath, Klaus Kisters, Michael F. Holick (2013). Vitamin D: Update 2013: From rickets prophylaxis to general preventive healthcare.        Dermatoendocrinol 2013 Jun 1;5(3):331-47. DOI: 10.4161/derm.26738
  19. Chiba A, Raman R et al (2017). Serum Vitamin D Levels Affect Pathologic Complete Response in Patients Undergoing Neoadjuvant Systemic Therapy for Operable Breast Cancer. In: Clinical breast cancer. DOI: 10.1016/j.clbc.2017.12.001

Titelbild: PDPics, www.pixabay.com

Kapitel 7.2.1 – Hautkrebs und Sonnenschutz

  1. https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/krebs_in_deutschland_inhalt.html;jsessionid=046232C5C19C14D64BDE90151A095BF4.1_cid290
  2. Matthews NH (2017). Epidemiology of Melanoma. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK481862/
  3. Veronique Bataille (2013). Melanoma. Shall we move away from the sun and focus more on embryogenesis, body weight and longevity? Medical Hypotheses 2013 Nov; 81(5): 846–850. DOI: 10.1016/j.mehy.2013.05.031
  4. Bataille V et al. (2005). A multicentre epidemiological study on sunbed use and cutaneous melanoma in Europe,  European Journal of Cancer. 2005 Sep;41(14):2141-9
  5. https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/krebs_in_deutschland_node.html
  6. Glusac EJ. (2011). The melanoma ‘epidemic’: Lessons from prostate cancer. Journal of Cutaneous Pathology, 39(1), 17-20. DOI:10.1111/j.1600-0560.2011.01848.x
  7. Jürgen Tacke (2015). Das deutsche Hautkrebsscreening: Vom Ende einer Illusion; Deutscher Ärzte-Verlag, Zeitschrift für Allgemeinmedizin, ZFA 7-2015; 91 (7/8)
  8. Gandini S, Sera F et al (2005). Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. European Journal of Cancer, 41(1), 45–60. DOI: 10.1016/j.ejca.2004.10.016
  9. Gandini S, Montella M et al for CLINICAL NATIONAL MELANOMA REGISTRY GROUP (2016).  Sun exposure and melanoma prognostic factors. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27073541
  10. Chang Y-M, Barrett JH et al (2009). Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls. International Journal of Epidemiology, 38(3), 814–830. DOI: 10.1093/ije/dyp166
  11. Alexander Wunsch: Die Kraft des Lichts: Warum wir gutes Licht brauchen und schlechtes Licht uns krank macht. ISBN 978-3742309112, Riva Verlag, München 2019
  12. Newton-Bishop JA, Beswick S et al (2009). Serum 25-Hydroxyvitamin D3 Levels Are Associated With Breslow Thickness at Presentation and Survival From Melanoma. Journal of Clinical Oncology, 27(32), 5439–5444. DOI: 10.1200/jco.2009.22.1135
  13. Berwick M, Armstrong B et al (2005). Sun Exposure and Mortality From Melanoma. JNCI: Journal of the National Cancer Institute, 97(23), 1791–1791. DOI: 10.1093/jnci/dji411
  14. Dixon K, Mason R et al (2013). Vitamin D and Death by Sunshine. International Journal of Molecular Sciences, 14(1), 1964–1977. DOI: 10.3390/ijms14011964
  15. Muralidhar S, Newton-Bishop J et al (2019). Vitamin D–VDR Signaling Inhibits Wnt/β-Catenin–Mediated Melanoma Progression and Promotes Antitumor Immunity. Cancer Research, 79(23), 5986–5998. DOI: 10.1158/0008-5472.can-18-3927
  16. Grigalavicius M, Moan J et al (2015). Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer. International Journal of Dermatology, 55(1). DOI: 10.1111/ijd.13065
  17. Reichrath J, Saternus R, Vogt T (2017). Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond. Molecular and Cellular Endocrinology, 453, 96–102. DOI: 10.1016/j.mce.2017.05.001
  18. Ince B, Yildirim MEC, Dadaci M (2019). Assessing the Effect of Vitamin D Replacement on Basal Cell Carcinoma Occurrence and Recurrence Rates in Patients with Vitamin D Deficiency. Hormones and Cancer, 10(4-6), 145–149. DOI: 10.1007/s12672-019-00365-2
  19. Some Sunscreen Ingredients May Disrupt Sperm Cell Function. (n.d.). Retrieved from https://www.endocrine.org/news-and-advocacy/news-room/2016/some-sunscreen-ingredients-may-disrupt-sperm-cell-function
  20. https://www.ewg.org/sunscreen/report/the-trouble-with-sunscreen-chemicals/
  21. Lorigo M, Martinez-De-Oliveira J et al (2019). UV-B Filter Octylmethoxycinnamate Induces Vasorelaxation by Ca2 Channel Inhibition and Guanylyl Cyclase Activation in Human Umbilical Arteries. International Journal of Molecular Sciences, 20(6), 1376. DOI: 10.3390/ijms20061376
  22. Lorigo M, Mariana M, Cairrao E (2018). Photoprotection of ultraviolet-B filters: Updated review of endocrine disrupting properties. Steroids, 131, 46–58. DOI: 10.1016/j.steroids.2018.01.006
  23. Lorigo M, Martinez-De-Oliveira J et al (2019). UV-B Filter Octylmethoxycinnamate Induces Vasorelaxation by Ca2 Channel Inhibition and Guanylyl Cyclase Activation in Human Umbilical Arteries. International Journal of Molecular Sciences, 20(6), 1376. DOI: 10.3390/ijms20061376
  24. Ruiz PA, Morón B et al (2016). Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut, 66(7), 1216–1224. DOI: 10.1136/gutjnl-2015-310297
  25. Cross SE, Innes B et al (2007). Human Skin Penetration of Sunscreen Nanoparticles: In-vitro Assessment of a Novel Micronized Zinc Oxide Formulation. Skin Pharmacology and Physiology, 20(3), 148-154. DOI:10.1159/000098701
  26. Lademann J, Weigmann H et al (1999). Penetration of Titanium Dioxide Microparticles in a Sunscreen Formulation into the Horny Layer and the Follicular Orifice. Skin Pharmacology and Physiology, 12(5), 247-256. DOI:10.1159/000066249
  27. Pflücker F, Wendel V et al (2001). The Human Stratum corneum Layer: An Effective Barrier against Dermal Uptake of Different Forms of Topically Applied Micronised Titanium Dioxide. Skin Pharmacology and Physiology, 14(1), 92-97. DOI:10.1159/000056396
  28. Leite-Silva V, Sanchez W et al (2016). Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment. European Journal of Pharmaceutics and Biopharmaceutics, 104, 140-147. DOI:10.1016/j.ejpb.2016.04.022
  29. Gulson B, McCall M et al (2010). Small Amounts of Zinc from Zinc Oxide Particles in Sunscreens Applied Outdoors Are Absorbed through Human Skin. Toxicological Sciences, 118(1), 140-149. DOI:10.1093/toxsci/kfq243

Titelbild: ardoramanda, www.pixabay.com

Abb. 3: Alexander Wunsch, sie Nr. 11

Kapitel 7.3 – Vitamin D auf der Intensivstation

  1. Braun A, Chang D et al (2011). Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill*. Critical Care Medicine, 39(4), 671–677. DOI: 10.1097/ccm.0b013e318206ccdf
  2. Moraes R, Friedman G et al (2015). Vitamin D deficiency is independently associated with mortality among critically ill patients. Clinics, 70(5), 326–332. DOI: 10.6061/clinics/2015(05)04
  3. Zapatero A, Nolla J et al (2018). Severe vitamin D deficiency upon admission in critically ill patients is related to acute kidney injury and a poor prognosis. Medicina Intensiva (English Edition), 42(4), 216–224. DOI: 10.1016/j.medine.2017.07.002
  4. Matthews LR, Ahmed Y et al (2012). Worsening severity of vitamin D deficiency is associated with increased length of stay, surgical intensive care unit cost, and mortality rate in surgical intensive care unit patients. The American Journal of Surgery, 204(1), 37–43. DOI: 10.1016/j.amjsurg.2011.07.021
  5. Khalili H, Alizadeh N et al (2015). Serum Vitamin D levels at admission predict the length of intensive care unit stay but not in-hospital mortality of critically ill surgical patients. Journal of Research in Pharmacy Practice, 4(4), 193. DOI: 10.4103/2279-042x.167051
  6. Moromizato T, Litonjua AA et al (2014). Association of Low Serum 25-Hydroxyvitamin D Levels and Sepsis in the Critically Ill. Critical Care Medicine, 42(1), 97–107. DOI: 10.1097/ccm.0b013e31829eb7af
  7. Shojaei M, Sabzeghabaei A et al (2019). The Correlation between Serum Level of Vitamin D and Outcome of Sepsis Patients; a Cross-Sectional Study. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377223/

Titelbild: sasint, www.pixabay.com

Kapitel 7.4 – Alter (Demenz und Gebrechlichkeit)

  1. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin d levels and bone mineral density: a population-based study of younger and older adults. The American journal of medicine 2004;116(9):634–9
  2. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. The New England journal of medicine 1997;337(10):670–6
  3. Chapuy MC, Arlot ME et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women 1992;327(23):1637–42
  4. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. Bmj 2003;326(7387):469
  5. Hirschfeld HP, Kinsella R, Duque G (2017). Osteosarcopenia. Where bone, muscle, and fat collide. In: Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 28 (10), S. 2781–2790. DOI: 10.1007/s00198-017-4151-8
  6. Arai H, Satake S, Kozaki K (2018). Cognitive Frailty in Geriatrics. Clinics in Geriatric Medicine, 34(4), 667-675. DOI:10.1016/j.cger.2018.06.011
  7. Proietti M, Cesari M (2020). Frailty: What Is It? Advances in Experimental Medicine and Biology Frailty and Cardiovascular Diseases, 1-7. DOI:10.1007/978-3-030-33330-0_1
  8. Erlandson KM, Guaraldi G, Falutz J (2016). More than osteoporosis. Age-specific issues in bone health. In: Current opinion in HIV and AIDS 11 (3), S. 343–350. DOI: 10.1097/COH.0000000000000258
  9. Laurent MR, Dubois V et al (2016). Muscle-bone interactions. From experimental models to the clinic? A critical update. In: Molecular and cellular endocrinology 432, S. 14–36. DOI: 10.1016/j.mce.2015.10.017
  10. Nguyen ND, Ahlborg HG et al (2007). Residual Lifetime Risk of Fractures in Women and Men. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2007;22(6):781–8
  11. Heike A. Bischoff-Ferrari: Fracture epidemiology in the elderly. In: Duque G, Kiel DP, editors. Osteoporosis in Older Persons. Pathophysiology and therapeutic approach. Springer 2008, page 97, ISBN 978-1-84628-697-1
  12. Bischoff-Ferrari HA, Can U et al (2008). Severe vitamin D deficiency in Swiss hip fracture patients. Bone 2008;42(3):597–602
  13. Magaziner J, Hawkes W et al (2000). Recovery from hip fracture in eight areas of function. The journals of gerontology. Series A, Biological sciences and medical sciences 2000;55(9):M498-507
  14. Tinetti ME, Williams CS. Falls, injuries due to falls, and the risk of admission to a nursing home. The New England journal of medicine 1997;337(18):1279–84
  15. Cummings SR, Kelsey JL et al. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiologic reviews 1985;7:178–208
  16. Birge SJ, Morrow-Howell N, Proctor EK. Hip fracture. Clinics in geriatric medicine 1994;10(4):589–609
  17. Cummings SR, Rubin SM, Black D. The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen. Clinical orthopaedics and related research 1990;252:163–6
  18. Cummings SR, Nevitt MC et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. The New England journal of medicine 1995;332(12):767–73
  19. Stevens JA, Ryan G, Kresnow M. Fatalities and Injuries From Falls Among Older Adults—United States, 1993-2003 and 2001-2005. Morbidity & Mortality Weekly Report 2006;55(45):1221–4
  20. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. The New England journal of medicine 1988;319(26):1701–7
  21. Bischoff-Ferrari HA, Willett WC et al (2005). Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA: The journal of the American Medical Association 2005;293(18):2257–64
  22. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin d levels and bone mineral density: a population-based study of younger and older adults. The American journal of medicine 2004;116(9):634–9
  23. Bischoff-Ferrari HA, Dietrich T et al (2004). Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged >=60 y. The American journal of clinical nutrition 2004;80(2):752–8
  24. Boland R. Role of vitamin D in skeletal muscle function. Endocrine reviews 1986;7(4):434–48
  25. Sørensen OH, Lund B et al. Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clinical science (London 1979) 1979;56(2):157–61
  26. Bischoff HA, Stähelin HB et al (2003). Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. Journal of bone and mineral research. The official journal of the American Society for Bone and Mineral Research 2003;18(2):343–51
  27. Bischoff-Ferrari HA, Dawson-Hughes B et al (2004). Effect of vitamin D on falls: a meta-analysis. JAMA: The journal of the American Medical Association 2004;291(16):1999–2006
  28. Graafmans WC, Ooms ME et al. Falls in the elderly: a prospective study of risk factors and risk profiles. American Journal of Epidemiology 1996;143(11):1129–36
  29. Bischoff-Ferrari HA, Dawson-Hughes B et al (2004). Effect of vitamin D on falls: a meta-analysis. JAMA: The journal of the American Medical Association 2004;291(16):1999–2006
  30. Wong YYE, McCaul AK et al (2013). Low Vitamin D Status Is an Independent Predictor of Increased Frailty and All-Cause Mortality in Older Men: The Health in Men Study. The Journal of Clinical Endocrinology & Metabolism, 98(9), 3821–3828. DOI: 10.1210/jc.2013-1702
  31. Zhou J, Huang P et al (2016). Association of vitamin D deficiency and frailty: A systematic review and meta-analysis. Maturitas, 94, 70–76. DOI: 10.1016/j.maturitas.2016.09.003
  32. Buchebner D, Bartosch P et al (2019). Association Between Vitamin D, Frailty, and Progression of Frailty in Community-Dwelling Older Women. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31287540
  33. Visser M, Lips P et al (2006). Low serum concentrations of 25-hydroxyvitamin D in older persons and the risk of nursing home admission. The American Journal of Clinical Nutrition, 84(3), 616–622. DOI: 10.1093/ajcn/84.3.616
  34. Kojima G, Tanabe M (2016). Frailty is Highly Prevalent and Associated with Vitamin D Deficiency in Male Nursing Home Residents. Journal of the American Geriatrics Society, 64(9). DOI: 10.1111/jgs.14268
  35. Samefors M, Östgren CJ et al (2014). Vitamin D deficiency in elderly people in Swedish nursing homes is associated with increased mortality. European Journal of Endocrinology, 170(5), 667–675. DOI: 10.1530/eje-13-0855
  36. Annweiler C, Schott AM et al (2010). Association of vitamin D deficiency with cognitive impairment in older women: Cross-sectional study. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19794127 (52)
  37. McCann JC, Ames BN (2008). Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18056830X
  38. Wilkins CH, Sheline YI et al (2006). Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17138809
  39. Oudshoorn C, Mattace-Raso FU et al. (n.d.). Higher serum vitamin D3 levels are associated with better cognitive test performance in patients with Alzheimer’s disease. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18503256
  40. Llewellyn DJ, Langa KM, Lang, IA (2009. Serum 25-hydroxyvitamin D concentration and cognitive impairment. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19073839
  41. Annweiler C, Llewellyn DJ, Beauchet O. (n.d.). Low serum vitamin D concentrations in Alzheimer’s disease: A systematic review and meta-analysis. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23042216
  42. Miller JW, Harvey D et al (2015). Vitamin D Status and Rates of Cognitive Decline in a Multiethnic Cohort of Older Adults. In: JAMA neurology 72 (11), S. 1295–1303. DOI: 10.1001/jamaneurol.2015.2115
  43. Wilkins CH, Sheline YI et al (2006). Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17138809
  44. Llewellyn DJ, Lang IA et al (2010). Vitamin D and risk of cognitive decline in elderly persons. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20625021
  45. Chaves M, Toral A et al (2014). (n.d.) Treatment with vitamin D and slowing of progression to severe stage of Alzheimer’s disease. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25153973
  46. Kuningas M, Mooijaart SP et al (2009). VDR gene variants associate with cognitive function and depressive symptoms in old age. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17714831
  47. Beydoun MA, Ding EL et al (2012). Vitamin D receptor and megalin gene polymorphisms and their associations with longitudinal cognitive change in US adults. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22170372
  48. Jia J, Zhang Y et al (2019). Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. Journal of Neurology, Neurosurgery & Psychiatry. DOI:10.1136/jnnp-2018-320199
  49. Annweiler C, Fantino B et al (2012). Vitamin D insufficiency and mild cognitive impairment: Cross-sectional association. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22339714
  50. Annweiler C, Beauchet O (2012). Serum Vitamin D Deficiency as a Predictor of Incident Non-Alzheimer Dementias: A 7-Year Longitudinal Study. Retrieved from https://www.karger.com/Article/Abstract/334944?id=pmid:6610841
  51. Annweiler C, Llewellyn DJ et al (2013). (n.d.). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23948884
  52. Littlejohns TJ, Annweiler C et al (2014). Vitamin D and the risk of dementia and Alzheimer disease. In: Neurology 83 (10), S. 920–928. DOI: 10.1212/WNL.0000000000000755
  53. Bredesen D, Amos E et al (2016). Reversal of cognitive decline in Alzheimer’s disease. Aging, 8(6), 1250-1258. DOI:10.18632/aging.100981
  54. Mark M. Alipio, Department of Radiologic Technology, College of Allied Health Sciences, Vitamin D supplementation could possibly improve clinical outcomes of patients infected with Coronavirus 2019 (Covid-2019), SSRN Electronic Journal 2020. DOI: 10.2139/ssrn.3571484

Titelbild: Free-Photos, www.pixabay.com

Kapitel 8 – Vitamin D-Mangel bei Haustieren

  1. Rosa C, Handel I et al (2019). Vitamin D status in dogs with babesiosis. Onderstepoort J Vet Res.2019 Mar 28;86(1):e1-e5. DOI: 10.4102/ojvr.v86i1.1644
  2. Sanchez-Cespedes R, Fernandez-Martinez MD et al (2018). Vitamin D-Receptor-Expression in der Brustdrüse von Hunden und Beziehung zu klinisch-pathologischen Parametern und Progesteron/Östrogen-Rezeptoren. Vet Comp Oncol. 2018 Mar;16(1):E185-E193. DOI:  10.1111/vco.12371. Epub 2017 Nov 27
  3. Young LR, Backus RC (2016). Orale Vitamin-D-Supplementierung mit dem Fünffachen der empfohlenen Menge wirkt sich geringfügig auf die Serum-25-Hydroxyvitamin-D-Konzentrationen bei Hunden aus. J. Nutri Sci 2016 Jul 29;5:e31. DOI: 10.1017/jns.2016.23. eCollection 2016
  4. Jaffey AJ, Backus RC et al (2018). Serum vitamin D concentrations in hospitalized critically ill dogs. PLOS ONE March 28, 2018 https://doi.org/10.1371/journal.pone.0194062

Titelbild: Hund – Jonathan Chiemsee2016, www.pixabay.com

Abb. 1: Katze – Jonathan Sautter, www.pixabay.com

Kapitel 9 – Wo sind die sinnvollsten Quellen für Vitamin D?

  1. Grant WB, Holick MF (2005). Benefits and requirements of vitamin D for optimal health: a review. Altern Med Rev. 2005 Jun;10(2):94-111. Alternative medicine review: a journal of clinical therapeutic 2005;10(2):94–111
  2. Veugelers P, Ekwaru J (2014). A Statistical Error in the Estimation of the Recommended Dietary Allowance for Vitamin D. Nutrients, 6(10), 4472–4475. DOI: 10.3390/nu6104472
  3. Heaney R, Cedric C et al (2015). Letter to Veugelers, P.J. and Ekwaru, J.P., A Statistical Error in the Estimation of the Recommended Dietary Allowance for Vitamin D. Nutrients 2014, 6, 4472–4475; DOI:10.3390/nu6104472. Retrieved from https://www.mdpi.com/2072-6643/7/3/1688
  4. Vieth R, Holick MF (2018). The IOM—Endocrine Society Controversy on Recommended Vitamin D Targets. Vitamin D, 1091–1107. DOI: 10.1016/b978-0-12-809965-0.00059-8
  5. Deutsche Gesellschaft für Ernährung (DGE): https://www.dge.de/wissenschaft/referenzwerte/vitamin-d/
  6. Vieth R, Bischoff-Ferrari H et al (2007). The urgent need to recommend an intake of vitamin D that is effective. The American journal of clinical nutrition 2007;85(3):649–50
  7. Reichrath J (2006). The challenge resulting from positive and negative effects of sunlight: How much solar UV exposure is appropriate to balance between risks of vitamin D deficiency and skin cancer? Progress in Biophysics and Molecular Biology 2006;92(1):9–16
  8. Lucas RM, McMichael AJ et al (2008). Estimating the global disease burden due to ultraviolet radiation exposure. International Journal of Epidemiology, 37(3), 654-667. DOI:10.1093/ije/dyn017
  9. Tanning As a Source Of Vitamin D.https://www.grassrootshealth.net/blog/tanning-source-vitamin-d/
  10. Holick MF (2002). Sunlight and vitamin D: both good for cardiovascular health. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1495109/
  11. Gandini S, Sera F et al (2005). Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. European Journal of Cancer, 41(1), 45–60. DOI: 10.1016/j.ejca.2004.10.016
  12. Gandini S, Montella M et al for CLINICAL NATIONAL MELANOMA REGISTRY GROUP (2016). Sun exposure and melanoma prognostic factors. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27073541
  13. Newton-Bishop JA, Beswick S et al (2009). Serum 25-Hydroxyvitamin D3 Levels Are Associated With Breslow Thickness at Presentation and Survival From Melanoma. Journal of Clinical Oncology, 27(32), 5439–5444. DOI: 10.1200/jco.2009.22.1135
  14. Muralidhar S, Newton-Bishop J et al (2019). Vitamin D–VDR Signaling Inhibits Wnt/β-Catenin–Mediated Melanoma Progression and Promotes Antitumor Immunity. Cancer Research, 79(23), 5986–5998. DOI: 10.1158/0008-5472.can-18-3927
  15. Reichrath J, Saternus R, Vogt T (2017). Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond. Molecular and Cellular Endocrinology, 453, 96–102. DOI: 10.1016/j.mce.2017.05.001
  16. Ince B, Yildirim MEC, Dadaci M (2019). Assessing the Effect of Vitamin D Replacement on Basal Cell Carcinoma Occurrence and Recurrence Rates in Patients with Vitamin D Deficiency. Hormones and Cancer, 10(4-6), 145–149. DOI: 10.1007/s12672-019-00365-2
  17. Vieth R (2006). Critique of the Considerations for Establishing the Tolerable Upper Intake Level for Vitamin D: Critical Need for Revision Upwards. The Journal of nutrition 2006;136(4):1117–22
  18. Hathcock JN, Shao A, Vieth R, Heaney R (2007). Risk assessment for vitamin D. The American journal of clinical nutrition 2007;85(1):6–18
  19. Hollis BW (2005). Circulating 25-Hydroxyvitamin D Levels Indicative of Vitamin D Sufficiency: Implications for Establishing a New Effective Dietary Intake Recommendation for Vitamin D. The Journal of Nutrition, 135(2), 317–322. DOI: 10.1093/jn/135.2.317
  20. Kimball SM, Vieth R et al (2007). Safety of vitamin D3 in adults with multiple sclerosis. In: The American journal of clinical nutrition 86 (3), S. 645–651
  21. McCullough PJ, Amend J (2017). Results of daily oral dosing with up to 60,000 international units (iu) of vitamin D3 for 2 to 6 years in 3 adult males. In: The Journal of steroid biochemistry and molecular biology 173, S. 308–312. DOI: 10.1016/j.jsbmb.2016.12.009
  22. McCullough PJ, Lehrer DS, Amend J (2019). Daily oral dosing of vitamin D3 using 5000 TO 50,000 international units a day in long-term hospitalized patients: Insights from a seven year experience. The Journal of Steroid Biochemistry and Molecular Biology, 189, 228–239. DOI: 10.1016/j.jsbmb.2018.12.010
  23. Garland CF, Baggerly LL et al (2011). Vitamin D supplement doses and serum 25-hydroxyvitamin D in the range associated with cancer prevention. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21378345
  24. Ekwaru JP, Holick MF et al (2014). The Importance of Body Weight for the Dose Response Relationship of Oral Vitamin D Supplementation and Serum 25-Hydroxyvitamin D in Healthy Volunteers. PLoS ONE, 9(11). DOI: 10.1371/journal.pone.0111265
  25. Shirvani A, Holick MF (2019). Disassociation of Vitamin D’s Calcemic Activity and Non-calcemic Genomic Activity and Individual Responsiveness: A Randomized Controlled Double-Blind Clinical Trial. Scientific Reports, 9(1). DOI: 10.1038/s41598-019-53864-1
  26. Prasse A (2016). The Diagnosis, Differential Diagnosis, and Treatment of Sarcoidosis. Deutsches Aerzteblatt Online. DOI:10.3238/arztebl.2016.0565
  27. Traub LM et al (2014). Impact of Vitamin D 3 Dietary Supplement Matrix on Clinical Response. Retrieved from https://academic.oup.com/jcem/article/99/8/2720/2537822
  28. Aglipay M, Birken CS et al (2017). Effect of High-Dose vs Standard-Dose Wintertime Vitamin D Supplementation on Viral Upper Respiratory Tract Infections in Young Healthy Children. Jama, 318(3), 245. DOI: 10.1001/jama.2017.8708
  29. Carlberg C, Haq A (2016). The concept of the personal vitamin D response index. In: The Journal of steroid biochemistry and molecular biology. DOI: 10.1016/j.jsbmb.2016.12.011
  30. Abdollahzadeh R, Fard MS et al (2016). Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis. A case-control study. In: Journal of the neurological sciences 367, S. 148–151. DOI: 10.1016/j.jns.2016.05.053
  31. Finamor DC, Sinigaglia-Coimbra R et al (2013). A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. In: Dermato-endocrinology 5 (1), S. 222–234. DOI: 10.4161/derm.24808

Titelbild: Daoudi Aissa, www.unsplash.com

Abb. 1: Zeichnung Peter Ruge, Copyright Akademie für menschliche Medizin

Unter folgendem QR-Code bzw. Webadresse können Sie die dminder-App von Ontometrics für Ihr Smartphone downloaden: http://dminder.ontometrics.com/

Kapitel 10 – Sonnenlicht wirkt über Vitamin D hinaus

  1. Slominski AT, Zmijewski MA et al (2018). How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology, 159(5), 1992-2007. DOI:10.1210/en.2017-03230
  2. Mead MN (2008). Benefits of Sunlight: A Bright Spot for Human Health. Environmental Health Perspectives, 116(4). DOI: 10.1289/ehp.116-a160
  3. Brainard GC, Sliney D et al (2008). Sensitivity of the human circadian system to short-wavelength (420-nm) light. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18838601
  4. Sherri M (2015). Seasonal Affective Disorder: An Overview of Assessment and Treatment Approaches. Retrieved from https://www.hindawi.com/journals/drt/2015/178564/ 
  5. Bhatti P, Buchanan DT et al (2016). Oxidative DNA damage during sleep periods among nightshift workers. Occupational and Environmental Medicine, 73(8), 537-544
  6. Bhatti P, Buchanan DT et al (2017). Oxidative DNA damage during night shift work. Occupational and Environmental Medicine, 74(9), 680-683
  7. https://www.aerzteblatt.de/nachrichten/69902/Warum-Nachtarbeit-das-Krebsrisiko-erhoeht
  8. Liu D, Fernandez BO et al (2014). UVA Irradiation of Human Skin Vasodilates Arterial Vasculature and Lowers Blood Pressure Independently of Nitric Oxide Synthase. Journal of Investigative Dermatology, 134(7), 1839-1846. DOI:10.1038/jid.2014.27
  9. Correale J, Farez MF (2013). Modulation of multiple sclerosis by sunlight exposure: Role of cis-urocanic acid. J Neuroimmunol 2013 Aug 15;261(1-2):134-40. DOI: 10.1016/j.jneuroim.2013.05.014
  10. Prakash S et al (2010). The prevalence of headache may be related with the latitude: a possible role of Vitamin D insufficiency?  Journal of Headache and Pain, 2010, 11(4), 301-7
  11. Taylor SL, Kaur M et al (2009). Pilot study of the effect of ultraviolet light on pain and mood in fibromyalgia syndrome. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19769472

Titelbild: Will van Wingerden, www.unsplash.com

Kapitel 11 – Mangel an Urkraft führt zum Natur-Defizit-Effekt

  1. Veröffentlicht von Alexander Kunst am 06.11.2019. Häufigkeit von Sport in Deutschland 2018. Retrieved from https://de.statista.com/statistik/daten/studie/158278/umfrage/haeufigkeit-von-sport-und-bewegung/
  2. Gesundheitsbericht des RKI aus dem Jahr 2015. https://www.rki.de/DE/Content/Gesundheitsmonitoring/Gesundheitsberichterstattung/GesInDtld/gesundheit_in_deutschland_2015.pdf?__blob=publicationFile
  3. http://www.gbe-bund.de/pdf/DEGS1_Koerperliche_Aktivitaet.pdf
  4. Pedersen L, Hojman P (2012). Muscle-to-organ cross talk mediated by myokines. In: Adipocyte 1 (3), S. 164–167. DOI: 10.4161/adip.20344
  5. Freiberger E, Sieber C, Pfeifer K (2011). Physical activity, exercise, and sarcopenia – future challenges. In: Wiener medizinische Wochenschrift (1946) 161 (17-18), S. 416–425. DOI: 10.1007/s10354-011-0001-z
  6. Ahmad T, Testani JM (2017). Physical Activity Prevents Obesity and Heart Failure. Now What Are We Going to Do About It? In: JACC. Heart failure 5 (5), S. 385–387. DOI: 10.1016/j.jchf.2017.03.006
  7. Lugo D, Pulido AL et al (2019). The effects of physical activity on cancer prevention, treatment and prognosis. A review of the literature. In: Complementary therapies in medicine 44, S. 9–13. DOI: 10.1016/j.ctim.2019.03.013
  8. Camandola S, Mattson MP (2017). Brain metabolism in health, aging, and neurodegeneration. In: The EMBO journal 36 (11), S. 1474–1492. DOI: 10.15252/embj.201695810
  9. Peter zu Eulenburg (2018). Weltraum: Das Gehirn verändert sich (Heute Journal). ZDF, 18.11.2018, zuletzt geprüft am 02.01.2020
  10. Pedersen BK, Saltin B (2015). Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. In: Scandinavian journal of medicine & science in sports 25 Suppl 3, S. 1–72. DOI: 10.1111/sms.12581
  11. Ames BN (2010). Optimal micronutrients delay mitochondrial decay and age-associated diseases. Mechanisms of Ageing and Development, 131(7-8), 473-479. DOI:10.1016/j.mad.2010.04.005
  12. Ames BN (2018). Prolonging healthy aging: Longevity vitamins and proteins. Proceedings of the National Academy of Sciences, 115(43), 10836-10844. DOI:10.1073/pnas.1809045115
  13. Krug S et al (2018). Sport- und Ernährungsverhalten bei Kindern und Jugendlichen in Deutschland – Querschnitt-Ergebnisse aus KiGGS Welle 2 und Trends. Retrieved June 01, 2020, from https://edoc.rki.de/handle/176904/5687?show=full
  14. Calder PC (2017). Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions, 45(5), 1105-1115. DOI:10.1042/bst20160474
  15. Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ (2019). Role of the microbiome in human development. Gut, 68(6), 1108-1114. DOI:10.1136/gutjnl-2018-317503
  16. Li X, Zhang Y et al (2020). Bidirectional Brain‐gut‐microbiota Axis in increased intestinal permeability induced by central nervous system injury. CNS Neuroscience & Therapeutics. DOI:10.1111/cns.13401
  17. Thomas Biegl: Glücklich singen. (n.d.). Retrieved June 01, 2020, from http://www.thomasbiegl.gmxhome.de/1Diplomarbeit.html
  18. Grape C, Sandgren M et al (2002). Does singing promote well-being?: An empirical study of professional and amateur singers during a singing lesson. Integrative Physiological & Behavioral Science, 38(1), 65-74. DOI:10.1007/bf02734261
  19. Thomas Blank, Karl Adamek: Singen in der Kindheit: Eine empirische Studie zur Gesundheit und Schulfähigkeit von Kindergartenkindern und das Canto elementar-Konzept zum Praxistransfer, ISBN 978-3830923749, Waxmann Verlag, Münster 2010
  20. Fukui H (2003). The Effects of Music and Visual Stress on Testosterone and Cortisol in Men and Women. Neuro endocrinology letters Jun-Aug 2003, 24(3-4):173-80
  21. Dobzhansky T (1973). Nothing in Biology Makes Sense Except in the Light of Evolution, American Biology Teacher, 35 (3): 125–129, JSTOR 4444260; reprinted in Zetterberg, J. Peter, ed. (1983), Evolution versus Creationism, Phoenix, Arizona: ORYX Press
  22. Yusuf S, Hawken S et al (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. The Lancet, 364(9438), 937-952. DOI:10.1016/s0140-6736(04)17018-9
  23. Ford et al (2009). Healthy Living Is the Best Revenge. Archives of Internal Medicine, 169(15), 1355. DOI:10.1001/archinternmed.2009.237
  24. Iddir M, Brito A et al (2020). Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients, 12(6), 1562. DOI:10.3390/nu12061562
  25. Akademie für menschl. Medizin: https://spitzen-praevention.com 

Deutschen Stiftung für Gesundheitsinformationen und Prävention: https://dsgip.de

Die SonnenAllianz: https://sonnenallianz.spitzen-praevention.com

Life-SMS: https://lifesms.blog

Kompetenz statt Demenz: https://kompetenz-statt-demenz.de

Die NährstoffAllianz: https://nährstoffallianz.de

Abb. 1: Peter Ruge, Copyright Akademie für menschliche Medizin

Abb. 2: Emde Grafik, Copyright Akademie für menschliche Medizin

Abb. 3: Peter Ruge, Copyright Akademie für menschliche Medizin

Abb. 4: PIRO4D, www.pixabay.com

Abb. 5: Peter Ruge, Copyright: Akademie für menschliche Medizin

Abb. 7: AU-Daten der DAK-Gesundheit 1997 – 2014

Abb. 8: Peter Ruge, Copyright: Akademie für menschliche Medizin

Abb. 9: Peter Ruge, Copyright: Akademie für menschliche Medizin

Abb. 10: Peter Ruge, Copyright Akademie für menschliche Medizin

Vitamin D-Cofaktoren: Vitamin K2, Vitamin A & Magnesium

Vitamin D-Cofaktoren: Vitamin K2, Vitamin A & Magnesium

Welche Co-Faktoren sind bei der Einnahme von Vitamin D wirklich wichtig und wie sieht der aktuelle Stand der Forschung diesbezüglich aus? Diese Fragen werden in dem unten eingebetteten Videoausschnitt von dem führenden Vitamin D-Forscher Dr. Holick aus den USA beantwortet. Wir haben die Eckpunkte für sie zusammengefasst.

Bezugnehmend auf die verbreitete Diskussion über das Thema Cofaktoren, bezieht Dr. Holick in dem Interview folgende Stellung:

  • Magnesium ist vor allem für schwangere Frauen offensichtlich wichtig, vor allem wenn sie unter Eklampsie leiden, es schützt vermutlich sogar vor Präeklampsie. Magnesium ist also ein sehr wichtiger Bestandteil unseres Körpers!
  • Vitamin A ist ebenfalls sehr bedeutend für die allgemeine Gesundheit und das Wohlergehen der Zellen. Vitamin A kann kaum überdosiert werden, aber es ist notwendig, dass man über das ganze Leben genug davon zu sich nimmt.
  • Zu Vitamin K meint Dr. Holick Folgendes: Ob man Vitamin K über die Ernährung in ausreichendem Maße zuführt, ist in der Wissenschaft zurzeit umstritten. Es besteht jedoch kein Zweifel daran, dass Vitamin K eine wichtige Rolle für die Knochen und die Gerinnungsfaktoren spielt. Bei einer ausgewogenen Ernährung, insbesondere durch den Verzehr von grünem Blattgemüse, sollte die Vitamin K-Versorgung in Dr. Holicks Augen kein Problem darstellen. Wenn man sich gut ernährt, sei es somit nicht unbedingt notwendig Vitamin K2 zu supplementieren. Dr. Holick verweist dabei auf die intensiven Forschungen der Expertin Dr. Sarah Booth.
  • Auf die zurzeit in diversen Foren kursierende Frage, ob Vitamin K2 notwendig ist um Vitamin D im Darm aufzulösen, äußert Dr. Holick ganz klar die Ansicht, dass dies nicht stimmt - es gäbe diesbezüglich keinen wissenschaftlichen Beweis.

 

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

Quellen:

  1. Live-Interview mit Dr. Michael F. Holick im Rahmen des Kongresses für menschliche Medizin 2019 zum Thema „Tatort Schwangerschaft“: https://www.youtube.com/watch?v=lCAVYWJOacM&feature=youtu.be 

Die wichtige Rolle von Vitamin D bei Covid-19

Die wichtige Rolle von Vitamin D bei Covid-19

Mit zunehmender Durchimpfungsrate verdeutlicht sich, dass die Covid-19-Impfstoffe nicht die erhoffte Sicherheit vor der Erkrankung bieten. Vitamin D ist alleine aber auch für bereits Geimpfte eine sichere Option ohne Nebenwirkungen. Zudem unterscheidet  das Sonnenhormon Vitamin D bei seiner Wirksamkeit auch nicht zwischen heutigen oder zukünftigen Virus-Mutanten.

Ein Review (1), der im Januar 2021 bei MDPI veröffentlicht wurde, setzt sich mit der Frage auseinander, ob eine optimale Sonneneinstrahlung oder Vitamin D-Zufuhr COVID-Symptome reduzieren können. Wir haben den Review auf deutsch zusammengefasst, aufbereitet und die wichtigsten Punkte herausgearbeitet. Einleitend stellen die australischen und südafrikanischen Autoren dabei folgende Punkte heraus:

Vitamin D hat mehrere biologische Funktionen im Körper, unter anderem folgende (2-4):

  • Kalziumhomöostase
  • Regulierung von über tausend Genen
  • Hemmung von unnatürlichem Zellwachstum (Zellproliferation)
  • Produktion von Angiotensin und Renin, welche maßgeblich Blutdruck und Wasserhaushalt steuern
  • Induktion von Insulin
  • Produktion von Makrophagen, antimikrobielle Peptiden (Cathelicidine und Defensine), die entscheidende Einflussfaktoren des Immunsystems sind.

So wirkt Vitamin D bei Atemwegserkrankungen wie COVID-19

Es ist bereits bekannt, dass Vitamin D eine Rolle bei der Hemmung von Infektionserkrankungen und Entzündungen spielt, darunter akute Atemwegsinfektionen und akutes Atemnotsyndrom.

Die Haupttodesursache bei COVID-19 und anderen Atemwegserkrankungen ist ein durch Lungenentzündungen ausgelöstes akutes Atemnotsyndrom. Dabei ist, wie schon oben erwähnt, das Renin-Angiotensin-System von großer Bedeutung. Vitamin D reguliert das Renin-Angiotensin-System, worüber wir schon an anderer Stelle berichteten, was zu einer Verringerung von Entzündungsreaktionen und einer Reduktion von akuten Atemnotsyndromen führt (5-7).

Vitamin D beeinflusst darüber hinaus viele Immunzellen direkt über deren Vitamin D-Rezeptoren (8, 9). Antigen-präsentierende Zellen wie beispielsweise Makrophagen und dendritische Zellen scheinen durch Vitamin D aktiviert zu werden (10). Bei Vitamin D-Mangel wird der erste Abwehrmechanismus des Immunsystems gegen Viren und andere respiratorischen Erkrankungen dadurch gestört.

Abgesehen von den Auswirkungen von COVID-19 verursachen allgemeine Infektionen der Atemwege jährlich ca. 2,8 Millionen Todesfälle (Zahl aus 2010) (11). Zahlreiche Untersuchungen belegen den Zusammenhang zwischen dem Vitamin D-Spiegel und dem möglichen Auftreten von Atemwegsinfektionen und akuten Atemnotsyndromen (12-17).

Eine Meta-Analyse aus 8 Beobachtungsstudien mit 21.000 Probanden ergab, dass Personen mit niedrigen Vitamin D-Spiegeln von unter <20 ng/ml ein erhöhtes Risiko aufweisen, an Lungenentzündungen zu erkranken. Das generelle Risiko von Lungenschädigungen sowie der Reduktion der Lungenfunktion ist laut einer randomisierten Placebo-kontrollierten Studie deutlich höher bei Vitamin D-Mangel (18).

Auch bei der Influenza wurde die förderliche Wirkung eines angemessenen Vitamin D-Spiegels in vielen Studien bestätigt (19-22).


COVID-19 - Je höher der Vitamin D-Spiegel, desto geringer die Prävalenz

Zahlreiche Beobachtungsstudien verdeutlichen die offensichtliche Korrelation zwischen dem Vitamin D-Spiegel und der Häufigkeit von COVID-19-Erkrankungen bzw. positiven Testungen.

Carpagnano et al. (Poliklinik Bari, Italien) zeigten anhand von 42 Probanden, dass COVID-19-Patienten zu 81% an Vitamin D-Mangel leiden. Patienten mit akutem Vitamin D-Mangel von unter 10 ng/ml hatten nach 10 Tagen Krankenhausaufenthalt ein Sterberisiko von 50%. Lag der Vitamin D-Spiegel über 10 ng/ml, war das Sterberisiko auf 5%, also um den Faktor 10 reduziert (23).

Lau et al. führten eine ähnliche Studie in den USA durch. Auch in dieser wurde bei 84,6% der COVID-19-Patienten eine Vitamin D-Insuffizienz festgestellt (24).

Meltzer et al. fanden bei ihren Untersuchungen von 489 COVID-19-Patienten heraus, dass eine 1,7 mal höhere Ansteckungsgefahr besteht sich mit COVID-19 anzustecken, wenn ein Vitamin D-Mangel vorliegt (25).

D'Avolioet et al. unterteilten in einem Schweizer Krankenhaus Probanden mit positiven und negativen PCR-Test und ließen den mittleren Vitamin D-Wert bestimmen. Positiv Getestete hatten auch hierbei signifikant niedrigere mediane Vitamin D-Spiegel von 11,2 ng/ml, während negativ Getestete einen Spiegel von 24,6 ng/ml aufwiesen (26).

Forscher aus dem Vereinigtem Königreich kamen zu sehr ähnlichen Ergebnissen. Dort betrugen die Vitamin D-Spiegel der Gesunden 20,8 ng/ml, jene der COVID-Erkrankten nur 10,8 ng/ml (27).

Auch in Israel zeigt eine Studie mit 7807 Teilnehmern eine signifikante Korrelation zwischen niedrigen Vitamin D-Spiegeln im Serum und der Wahrscheinlichkeit an COVID-19 zu erkranken (28).

In Deutschland zeigte sich ebenfalls, dass deutliche Zusammenhänge zwischen der Vitamin D-Versorgung, dem Schweregrad und der Sterblichkeit beim Coronavirus bestehen (29).


Vitamin D als COVID-19-Therapeutikum

Vitamin D hilft nicht nur bei der Prävention von Infektionserkrankungen wie COVID-19, sondern kann auch therapeutisch in höheren Dosen erfolgreich eingesetzt werden.

Die Kombination von Vitamin D + Magnesium + Vitamin B12 führte in eine Kohortenstudie mit 47 COVID-19-Patienten im Alter von > 50, zu einer signifikant besseren Krankheitsverlauf. Patienten die 1000. I.E. Vitamin D + 150 mg Magnesium + 500 mcg Vitamin B12 erhielten, benötigten nur zu 17% eine Sauerstoffgabe, während bei der Kontrollgruppe 61,5% diese Therapie aufgrund eines schlechten Verlaufes brauchten (30).

Auch die spanische Cordoba-Studie von Castello et al., die wir an anderer Stelle bereits aufbereitet haben, wird in dem Review zitiert. Dabei wurde gezeigt, dass nur 2% der COVID-19-Patienten die therapeutisches Vitamin D verabreicht bekamen, auf die Intensivstation mussten. Bei der Vergleichsgruppe, die kein Vitamin D bekam, waren es 50%, von denen 2 verstarben. Aus der Vitamin D-Gruppe hatten alle überlebt (31).

Die Forschergruppe um Annweiler et al. bestätigte diese Ergebnisse und führte eine prospektive Kohortenstudie mit 66 französischen Pflegeheimbewohnern durch. Dabei stellten sie fest, dass die Sterblichkeit mit Vitamin D von 55,5% auf 17,5% reduziert wurde (32).


Wichtig ist die tägliche Einnahme, Bolusdosen weniger wirksam!

Eine große Metaanalyse von 25 randomisierten kontrollierten Studien (11.321 Teilnehmer im Alter von 0 bis 95 Jahren) zeigte, dass eine Vitamin-D-Supplementierung das Risiko für akute Atemwegsinfektionen bei allen Teilnehmern um etwa 11 % senkte. Dabei wurde jedoch festgestellt, dass die Schutzwirkung mit 19% bei Patienten deutlich stärker war, wenn sie täglich Vitamin D einnahmen, als bei denjenigen die einmalige hohe Bolusdosen verabreicht bekamen.

Das Fazit aus dieser Studie: Vitamin D ist ein Schutzmittel gegen akute Atemwegsinfektionen und eine tägliche oder wöchentliche Supplementierung ist effektiver als einzelne Bolusdosen in großen Abständen (33).

Warum dem so ist und Vitamin D täglich eingenommen werden sollte, erfahren Sie in unserem dafür erstellten Artikel!


Gekürzte Schlussfolgerung der Autoren des Reviews:

Vitamin D ist unbestreitbar ein bedeutender Faktor für die allgemeine körperliche Gesundheit und von besonderem Interesse im Zusammenhang mit COVID-19. Es korreliert mit einer positiven Wirkung bei der Verringerung von Infektionen und Symptomen. Eine Hypovitaminose (ein Mangel) von Vitamin D kann zu vielen Erkrankungen wie Rachitis, Osteoporose, Osteomalazie, bestimmten Krebsarten, Bluthochdruck, Herz-Kreislauf-Erkrankungen führen und kann als wesentlicher Faktor bei der Entwicklung von Zytokinstürmen angesehen werden, die bei COVID-19-Patienten zu akuten Atemnotsyndromen führen. Zahlreiche Studien deuten darauf hin, dass Vitamin D Entzündungen bei COVID-Patienten reduzieren kann. Deshalb wird eine angemessene Sonnenexposition oder die Versorgung mit Vitamin D-Nahrungsergänzungsmitteln empfohlen.

Literaturzitate:

  1. Abraham, J., Dowling, K. & Florentine, S. (2021). Can Optimum Solar Radiation Exposure or Supplemented Vitamin D Intake Reduce the Severity of COVID-19 Symptoms? International Journal of Environmental Research and Public Health, 18(2), 740. https://doi.org/10.3390/ijerph18020740
  2. Bilezikian, J.P.; Bikle, D.; Hewison, M.; Lazaretti-Castro, M.; Formenti, A.M.; Gupta, A.; Madhavan, M.V.; Nair, N.; Babalyan, B.; Hutchings, N.; et al. Mechanisms IN endocrinology:vitamin D and COVID-19. Eur. J. Endocrinol. 2020183, R133–R147.
  3. Bergman, P. The link between vitamin D and Covid-19: Distinguishing facts from fiction. J. Intern. Med. 2020289, 131–133.
  4. Quesada-Gomez, J.M.; Castillo, M.E.; Bouillon, R. Vitamin D Receptor stimulation to reduce Acute Respiratory Distress Syndrome (ARDS) in patients with Coronavirus SARS-CoV-2 infections: Revised Ms SBMB 2020_166. J. Steroid Biochem. Mol. Biol. 2020105719, 1–8.
  5. Kong, J.; Zhu, X.; Shi, Y.; Liu, T.; Chen, Y.; Bhan, I.; Zhao, Q.; Thadhani, R.; Li, Y.C. VDR attenuates acute lung injury by blocking the Ang 2-Tie-2 pathway and the renin-angiotensin system. Mol. Endocrinol. 201327, 2116–2125.
  6. Zhang, Y.; Leung, D.Y.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D inhibits monocyte/macrophage pro-inflammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol. 20121, 2127–2135.
  7. Xu, J.; Yang, J.; Chen, J.; Luo, Q.; Zhang, Q.; Zhang, H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol. Med. Rep. 201716, 7432–7438.
  8. Aranow, C. Vitamin D and the immune system. J. Investig. Med. 201159, 881–886.
  9. Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients 20135, 2502–2521
  10. Hewison, M. Vitamin D and Innate and Adaptive Immunity. In Vitamins & Hormones; Academic Press: New York, NY, USA, 2011; pp. 23–62.
  11. Bergman, P.; Lindh, A.U.; Björkhem-Bergman, L.; Lindh, J.D. Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 20138, e65835.
  12. Dancer, R.C.; Parekh, D.; Lax, S.; D’Souza, V.; Zheng, S.; Bassford, C.R.; Park, D.; Bartis, D.G.; Mahida, R.; Turner, A.M.; et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 201570, 617–624.
  13. Thickett, D.R.; Moromizato, T.; Litonjua, A.A.; Amrein, K.; Quraishi, S.A.; Lee-Sarwar, K.A.; Mogensen, K.M.; Purtle, S.W.; Gibbons, F.K.; Camargo, C.A., Jr. Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: A retrospective cohort study. BMJ Open Respir. Res. 20152, e000074.
  14. Leow, L.; Simpson, T.; Cursons, R.; Karalus, N.; Hancox, R.J. Vitamin D, innate immunity, and outcomes in community-acquired pneumonia. Respirology 201116, 611–616.
  15. Dancer, R.C.A.; Parekh, D.; Scott, A.; Perkins, G.D.; Thickett, D.R. T2 Vitamin D supplementation reduces perioperative systemic and alveolar inflammation in patients undergoing oesophagectomy: Results of the Vindaloo Trial. Thorax 201570, A1.
  16. Parekh, D.; Thickett, R.D.; Turner, A.M. Vitamin D deficiency and acute lung injury. Inflamm. Allergy Drug Targets 201312, 253–261.
  17. Parekh, D.; Dancer, R.C.; Lax, S.; Cooper, M.S.; Martineau, A.R.; Fraser, W.D.; Tucker, O.; Alderson, D.; Perkins, G.D.; Gao-Smith, F.; et al. Vitamin D to prevent acute lung injury following oesophagectomy (VINDALOO): Study protocol for a randomised placebo controlled trial. Trials 201314, 100.
  18. Zhou, Y.F.; Luo, B.A.; Qin, L.L. The association between vitamin D deficiency and community-acquired pneumonia: A meta-analysis of observational studies. Medicine 201898, e17252.
  19. Zhou, J.; Du, J.; Huang, L.; Wang, Y.; Shi, Y.; Lin, H. Preventive effects of vitamin D on seasonal influenza A in infants: A multicenter, randomized, open, controlled clinical trial. Pediatric Infect. Dis. J. 201837, 749–754.
  20. Sabetta, J.R.; DePetrillo, P.; Cipriani, R.J.; Smardin, J.; Burns, L.A.; Landry, M.L. Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adultsPLoS ONE 20105, e11088.
  21. Urashima, M.; Segawa, T.; Okazaki, M.; Kurihara, M.; Wada, Y.; Ida, H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 201091, 1255–1260.
  22. Arihiro, S.; Nakashima, A.; Matsuoka, M.; Suto, S.; Uchiyama, K.; Kato, T.; Mitobe, J.; Komoike, N.; Itagaki, M.; Miyakawa, Y. Randomized trial of vitamin D supplementation to prevent seasonal influenza and upper respiratory infection in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 201925, 1088–1095.
  23. Carpagnano, G.E.; Di Lecce, V.; Quaranta, V.N.; Zito, A.; Buonamico, E.; Palumbo, A.; Di Gioia, G.; Valerio, V.N.; Resta, O. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J. Endocrinol. Investig. 2020.
  24. Lau, F.H.; Majumder, R.; Torabi, R.; Saeg, F.; Hoffman, F.; Cirillo, J.D.; Greiffenstein, P. Vitamin D insufficiency is prevalent in severe COVID-19MedRxiv 2020.
  25. Meltzer, D.O.; Best, T.J.; Zhang, H. Association of vitamin D status and other clinical characteristics with COVID-19 test resultsJAMA 20203, e2019722.
  26. D’Avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; Nicolo, A.D.; Lucchini, R.; Keller, F.; Cantu, M. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients 202012, 1359.
  27. Baktash, V.; Hosack, T.; Patel, N.; Shah, S.; Kandiah, P.; Abbeele, K.V.D.; Mandal, A.K.; Missouris, C.G. Vitamin D status and outcomes for hospitalized older patients with Covid-19BMJ 2020, 138712.
  28. Merzon, E.; Tworowski, D.; Gorohovski, A.; Vinker, S.; Golan Cohen, A.; Green, I.; Frenkel, M. Morgenstern; Low plasma 25 (OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 2020287, 3693–3702.
  29. Radujkovic, A.; Hippchen, T.; Tiwari-Heckler, S.; Dreher, S.; Boxberger, M.; Merle, U. Vitamin D Deficiency and Outcome of COVID-19 PatientsNutrients 202012, 2757.
  30. Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; et al. A cohort study to evaluate the effect of combination Vitamin D, Magnesium, and Vitamin B12 on progression to severe outcome in older COVID-19 patients. Nutrition 2020, 111017.
  31. Entrenas Castillo, M.; Entrenas Costa, L.M.; Vaquero Barrios, J.M.; Alcala Diaz, J.F.; Miranda, J.L.; Bouillon, R.; Quesada Gomez, J.M. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID 19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020203, 1–6.
  32. Annweiler, C.; Hanotte, B.; de l’Eprevier, C.G.; Sebatier, J.-M.; Lafaie, L.; Celarier, T. Vitamin D and survival in Covid-19 patients: A quasi experimental study. J. Steroid Biochem. Mol. Biol. 2020204, 105771.
  33. Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017356, i6583.

Bilder:

Titelbild: raisondtre bei Adobe Stock

Virusbild: dottedyeti bei Adobe Stock

 

Sport-Fibel Quellennachweise

  1. Liu, D., Fernandez, B. O., Hamilton, A., Lang, N. N., Gallagher, J. M., Newby, D. E., . . . Weller, R. B. (2014). UVA Irradiation of Human Skin Vasodilates Arterial Vasculature and Lowers Blood Pressure Independently of Nitric Oxide Synthase. Journal of Investigative Dermatology, 134(7), 1839-1846. doi:10.1038/jid.2014.27
  2. Lucas, R. M., Mcmichael, A. J., Armstrong, B. K., & Smith, W. T. (2008). Estimating the global disease burden due to ultraviolet radiation exposure. International Journal of Epidemiology, 37(3), 654-667. doi:10.1093/ije/dyn017 
  3. Ginde, A. A., Wolfe, P., Camargo, C. A., & Schwartz, R. S. (2012, January). Defining vitamin D status by secondary hyperparathyroidism in the U.S. population. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21606669.
  4. Zhang, Lin; Quan, Minghui; Cao, Zhen-Bo (2019): Effect of vitamin D supplementation on upper and lower limb muscle strength and muscle power in athletes: A meta-analysis. In: PloS one 14 (4), e0215826. DOI: 10.1371/journal.pone.0215826.
  5. Montenegro, Karina Romeu; Cruzat, Vinicius; Carlessi, Rodrigo; Newsholme, Philip (2019): Mechanisms of vitamin D action in skeletal muscle. In: Nutrition Research Reviews, S. 1–13. DOI: 10.1017/S0954422419000064.
  6. Dzik, Katarzyna Patrycja; Kaczor, Jan Jacek (2019): Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. In: European journal of applied physiology 119 (4), S. 825–839. DOI: 10.1007/s00421-019-04104-x.
  7. Aydın, Canan Gönen; Dinçel, Yaşar Mahsut; Arıkan, Yavuz; Taş, Süleyman Kasım; Deniz, Serdar (2019): The effects of indoor and outdoor sports participation and seasonal changes on vitamin D levels in athletes. In: SAGE open medicine 7, 2050312119837480. DOI: 10.1177/2050312119837480.
  8. Constantini, N. W., Arieli, R., Chodick, G., & Dubnov-Raz, G. (2010). High Prevalence of Vitamin D Insufficiency in Athletes and Dancers. Clinical Journal of Sport Medicine, 20(5), 368–371. doi: 10.1097/jsm.0b013e3181f207f2
  9. Smith, L. L. (2003). Overtraining, Excessive Exercise, and Altered Immunity. Sports Medicine, 33(5), 347–364. doi: 10.2165/00007256-200333050-00002 & Lovell, G. (2008). Vitamin D Status of Females in an Elite Gymnastics Program. Clinical Journal of Sport Medicine, 18(2), 159–161. doi: 10.1097/jsm.0b013e3181650eee
  10. Zittermann, A.; Ernst, J. B.; Prokop, S.; Fuchs, U.; Gruszka, A.; Dreier, J. et al. (2019): Vitamin D supplementation of 4000 IU daily and cardiac function in patients with advanced heart failure: The EVITA trial. In: International journal of cardiology 280, S. 117–123. DOI: 10.1016/j.ijcard.2019.01.027.         & Ahmed, W., Khan, N., Glueck, C. J., Pandey, S., Wang, P., Goldenberg, N., … Khanal, S. (2009). Low serum 25 (OH) vitamin D levels (<32 ng/mL) are associated with reversible myositis-myalgia in statin-treated patients. Translational Research, 153(1), 11–16. doi: 10.1016/j.trsl.2008.11.002 & Birge, S. J., & Haddad, J. G. (1975). 25-hydroxycholecalciferol stimulation of muscle metabolism. Journal of Clinical Investigation, 56(5), 1100–1107. doi: 10.1172/jci108184 & Wassner, S. J., Li, J. B., Sperduto, A., & Norman, M. E. (1983). Vitamin D Deficiency, hypocalcemia, and increased skeletal muscle degradation in rats. Journal of Clinical Investigation, 72(1), 102–112. doi: 10.1172/jci110947
  11. Owens, D. J., Allison, R., & Close, G. L. (2018). Vitamin D and the Athlete: Current Perspectives and New Challenges. Sports Medicine, 48(S1), 3–16. doi: 10.1007/s40279-017-0841-9 & Forney, L. A., Earnest, C. P., Henagan, T. M., Johnson, L. E., Castleberry, T. J., & Stewart, L. K. (2014). Vitamin D Status, Body Composition, and Fitness Measures in College-Aged Students. Journal of Strength and Conditioning Research, 28(3), 814–824. doi: 10.1519/jsc.0b013e3182a35ed0 & Koundourakis, N. E., Androulakis, N. E., Malliaraki, N., & Margioris, A. N. (2014). Vitamin D and Exercise Performance in Professional Soccer Players. PLoS ONE, 9(7). doi: 10.1371/journal.pone.0101659 & Arazi, H., & Eghbali, E. (2019).25-Hydroxyvitamin D levels and its relation to muscle strength, maximal oxygen consumption, and body mass index in young and middle adulthood women. International Journal of Womens Health, Volume 11, 57–64. doi: 10.2147/ijwh.s188914 & Ardestani, A., Parker, B., Mathur, S., Clarkson, P., Pescatello, L. S., Hoffman, H. J., … Thompson, P. D. (2011). Relation of Vitamin D Level to Maximal Oxygen Uptake in Adults. The American Journal of Cardiology, 107(8), 1246–1249. doi: 10.1016/j.amjcard.2010.12.022 & Marawan, A., Kurbanova, N., & Qayyum, R. (2018). Association between serum vitamin D levels and cardiorespiratory fitness in the adult population of the USA. European Journal of Preventive Cardiology, 26(7), 750–755. doi: 10.1177/2047487318807279
  12. Sarah Erem (2019): Anabolic effects of vitamin D and magnesium in aging bone. In: The Journal of Steroid Biochemistry and Molecular Biology 193, S. 105400. DOI: 10.1016/j.jsbmb.2019.105400.
  13. Reddy, Pramod; Edwards, Linda R. (2019): Magnesium Supplementation in Vitamin D Deficiency. In: American journal of therapeutics 26 (1), e124-e132. DOI: 10.1097/MJT.0000000000000538.
  14. Trummer, Christian; Schwetz, Verena; Pandis, Marlene; Grübler, Martin R.; Verheyen, Nicolas; Gaksch, Martin et al. (2017): Effects of Vitamin D Supplementation on IGF-1 and Calcitriol: A Randomized-Controlled Trial. In: Nutrients 9 (6). DOI: 10.3390/nu9060623.
  15. Gogulothu, R., Nagar, D., Gopalakrishnan, S., Garlapati, V. R., Kallamadi, P. R., & Ismail, A. (2019). Disrupted expression of genes essential for skeletal muscle fibre integrity and energy metabolism in Vitamin D deficient rats. The Journal of Steroid Biochemistry and Molecular Biology, 105525. doi: 10.1016/j.jsbmb.2019.105525
  16. Wang, T. J., Pencina, M. J., Booth, S. L., Jacques, P. F., Ingelsson, E., Lanier, K., . . . Vasan, R. S. (2008). Vitamin D Deficiency and Risk of Cardiovascular Disease. Circulation, 117(4), 503-511. doi:10.1161/circulationaha.107.706127
  17. Judd, S. E., Nanes, M. S., Ziegler, T. R., Wilson, P. W., & Tangpricha, V. (2008). Optimal vitamin D status attenuates the age-associated increase in systolic blood pressure in white Americans: Results from the third National Health and Nutrition Examination Survey. The American Journal of Clinical Nutrition, 87(1), 136-141. doi:10.1093/ajcn/87.1
  18. Forman, J. P., Giovannucci, E., Holmes, M. D., Bischoff-Ferrari, H. A., Tworoger, S. S., Willett, W. C., & Curhan, G. C. (2007). Plasma 25-Hydroxyvitamin D Levels and Risk of Incident Hypertension. Hypertension, 49(5), 1063-1069. doi:10.1161/hypertensionaha.107.087288
  19. Moukayed, M., & Grant, W. B. (2017). The roles of UVB and vitamin D in reducing risk of cancer incidence and mortality: A review of the epidemiology, clinical trials, and mechanisms. Reviews in Endocrine and Metabolic Disorders, 18(2), 167-182. doi:10.1007/s11154-017-9415-2
  20. Lappe, J. M., Travers-Gustafson, D., Davies, K. M., Recker, R. R., & Heaney, R. P. (2007). Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. The American Journal of Clinical Nutrition, 85(6), 1586-1591. doi:10.1093/ajcn/85.6.1586
  21. Pilz, S., Dobnig, H., Winklhofer-Roob, B., Riedmuller, G., Fischer, J. E., Seelhorst, U., . . . Marz, W. (2008). Low Serum Levels of 25-Hydroxyvitamin D Predict Fatal Cancer in Patients Referred to Coronary Angiography. Cancer Epidemiology Biomarkers & Prevention, 17(5), 1228-1233. doi:10.1158/1055-9965.epi-08-0002
  22. Abbas, S., Linseisen, J., Slanger, T., Kropp, S., Mutschelknauss, E. J., Flesch-Janys, D., & Chang-Claude, J. (2008, January). Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer–results of a large case-control study. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17974532.
  23. Madden, J. M., Murphy, L., Zgaga, L., & Bennett, K. (2018). De novo vitamin D supplement use post-diagnosis is associated with breast cancer survival. Breast Cancer Research and Treatment, 172(1), 179-190. doi:10.1007/s10549-018-4896-6
  24. Pressemeldung der Deutschen Diabetes Gesellschaft
  25. Bogdanou, D., Penna-Martinez, M., Filmann, N., Chung, T., Moran-Auth, Y., Wehrle, J., . . . Badenhoop, K. (2016). T-lymphocyte and glycemic status after vitamin D treatment in type 1 diabetes: A randomized controlled trial with sequential crossover.Diabetes/Metabolism Research and Reviews, 33(3). doi:10.1002/dmrr.2865
  26. Grant WB, Baggerly CA et al (2020). Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients, 12(4), 988. DOI:10.3390/nu12040988
  27. Castillo M et al. (2020). Effect of Calcifediol Treatment and best Available Therapy versus best Available Therapy on Intensive Care Unit Admission and Mortality Among Patients Hospitalized for COVID-19: A Pilot Randomized Clinical study. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960076020302764?via%3Dihub
  28. Annweiler, C., Gall, D. L., Fantino, B., Beauchet, O., Tucker, K. L., & Buell, J. S. (2010). 25-Hydroxyvitamin D, Dementia, And Cerebrovascular Pathology In Elders Receiving Home Services. Neurology, 75(1), 95-96. doi:10.1212/wnl.0b013e3181e00ddb
  29. Annweiler, C., Rolland, Y., Schott, A. M., Blain, H., Vellas, B., Herrmann, F. R., & Beauchet, O. (2012). Higher Vitamin D Dietary Intake Is Associated With Lower Risk of Alzheimers Disease: A 7-Year Follow-up. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 67(11), 1205-1211. doi:10.1093/gerona/gls107
  30. Gandini, S., Montella, M., Ayala, F., Benedetto, L., Rossi, C. R., Vecchiato, A., . . . Ascierto, P. A. (2016). Sun exposure and melanoma prognostic factors. Oncology Letters, 11(4), 2706-2714. doi:10.3892/ol.2016.4292
  31. Gandini, S., Sera, F., Cattaruzza, M. S., Pasquini, P., Zanetti, R., Masini, C., . . . Melchi, C. F. (2005). Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. European Journal of Cancer, 41(14), 2040-2059. doi:10.1016/j.ejca.2005.03.034
  32. NetDoktor: https://www.netdoktor.de/krankheiten/hautkrebs/weisser-hautkrebs/ 
  33. Reichrath, J., Saternus, R., & Vogt, T. (2017). Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond. Molecular and Cellular Endocrinology, 453, 96-102. doi:10.1016/j.mce.2017.05.001
  34. Newton-Bishop, J. A., Beswick, S., Randerson-Moor, J., Chang, Y., Affleck, P., Elliott, F., . . . Bishop, D. T. (2009). Serum 25-Hydroxyvitamin D3 Levels Are Associated With Breslow Thickness at Presentation and Survival From Melanoma. Journal of Clinical Oncology, 27(32), 5439-5444. doi:10.1200/jco.2009.22.1135
  35. Hintzpeter B et al: Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. Journal of Nutrition 2008
  36. Klipker K, Baumgarten F et al: Psychische Auffälligkeiten bei Kindern und Jugendlichen in Deutschland – Querschnittergebnisse aus KiGGS Welle 2 und Trends. Journal of Health Monitoring 2018
  37. Reinehr T et al: Vitamin D Supplementierung jenseits des zweiten Lebensjahres. Monatsschrift Kinderheilkunde 2018
  38. Aufschnaiter U: Deutschlands Kranke Kinder – Wie auf Anweisung der Regierung Kitas und Schulen die Gesundheit unserer Kinder schädigen. Tredition GmbH Hamburg 2019
  39. https://www.tagesschau.de/inland/kreidezaehne-101.html

Vitamin D, Kalzium und die Sango Koralle

Vitamin D, Kalzium und die Sango Koralle

Kalzium spielt eine wichtige Rolle im Knochenstoffwechsel, wo es auch gemeinsam mit Vitamin D interagiert. Der Mineralstoff wird außerdem für verschiedene zelluläre Prozesse benötigt, wie zum Beispiel die Muskel- und Gefäßkontraktion, Nervenimpulsübertragung, aber auch für die Herz-, Nieren- und Lungenfunktion sowie die Blutgerinnung und das Hormonsystem. Doch sollte Kalzium  zusammen mit Vitamin D oder gar als Monopräparat eingenommen werden? Unsere Antworten finden Sie in diesem Newsfeed.

 

Wege der Kalziumaufnahme

Kalzium wird vornehmlich über die Ernährung aufgenommen und sollte dem Körper laut offiziellen nationalen und internationalen Empfehlungen mit 800-1000 mg pro Tag zugeführt werden. Proteingebundenes Kalzium aus Lebensmitteln wird im Magen durch die Magensäure freigesetzt, ehe es im Darm resorbiert werden kann (1). Eine intakte Magensäure ist also wichtig, damit eine effektive Kalziumaufnahme im Darm stattfinden kann.

Das Kalzium wird nach der Freisetzung im Darm über 2 verschiedene Transportmechanismen resorbiert (2,3):

  1. Über den transzellulären aktiven Transport: Dieser findet bei niedriger bis normaler Kalziumzufuhr größtenteils im Zwölffingerdarm und im oberen Leerdarm statt und ist vom aktiven Vitamin D (Calcitriol) abhängig. Ist der Vitamin D-Spiegel im Blut zu niedrig, kann dieser Prozess nicht ordnungsgemäß ablaufen.
  2. Über den parazellulären passiven Transport, der über die gesamte Länge des Darms mittels eines Diffusionsmechanismus funktioniert.

Am Beispiel einer Interventionsstudie lässt sich die Verbesserung des Vitamin D-Spiegels auf die Kalziumaufnahme veranschaulichen. Zwei Vergleichsgruppen wurden dabei mit kalziumarmer Ernährung und relativ niedrig dosierten Kalziumpräparaten versorgt, wobei eine der beiden Gruppen mit Vitamin D versorgt wurde. Trotz der Tatsache, dass der mittlere Vitamin D-Spiegel in der Gruppe ohne Vitamin D-Supplementierung mit 20 ng/ml den offiziellen Empfehlungen der Vitamin D-Versorgung entsprach, konnte die Vitamin D-Gruppe mit Spiegeln von 34,4 ng/ml signifikante 65% mehr Kalzium absorbieren (4). Welche Vitamin D-Werte wir als ausreichend betrachten, können Sie hier nachlesen >>


Die Rolle von Vitamin D bei der Kalziumaufnahme und -steuerung für unsere Knochengesundheit

Abb. 1: Knochen

Kalzium wird zum überwiegendem Teil in den Knochen und Zähnen gespeichert und bei Bedarf, für die in der Einleitung genannten Funktionen, freigesetzt. Um die Kalziumkonzentration im Blut nach oben hin zu regulieren, sorgt ein erhöhter PTH-Spiegel im Blut für die Mobilisierung des in den Knochen gespeicherten Kalziums. Dies geschieht aber nur dann, wenn zu wenig Kalzium über den Darm aufgenommen werden kann, was in den meisten Fällen durch einen Vitamin D-Mangel verursacht wird. Bleibt dieser Zustand über längere Zeit aufrecht, führt dies zu Osteomalazie, Osteoporose, Rachitis bei Kindern oder Zahnschmelzverlust und anderen degenerativen Erscheinungen.

Bezeichnenderweise finden sich die niedrigsten Parathormonwerte bei Vitamin D-Spiegeln von > 40 ng/ml aufwärts (5).

Denn Vitamin D ist ein wesentlicher Faktor bei der aktiven, transzellulären Aufnahme von Kalzium im Darm, aber auch die Steuerung des Knochenminerals ist vom Sonnenhormon abhängig. Wenn die Gefahr eines Kalziummangels besteht, sollte also zuallererst der Vitamin D-Spiegel kontrolliert werden. Denn nur falls bei einem regelrechten Vitamin D-Spiegel von über 40 ng/ml, immer noch ein Kalziummangel vorhanden ist, macht eine Supplementation oder Medikation mit dem Mineralstoff Sinn.

Vitamin D steuert Kalzium indirekt auch dahingehend, als dass es die Konzentration des sogenannten Matrix-Gla-Proteins (MPG) positiv beeinflusst (6). MPG ist für die Einlagerung des Kalziums in die Knochen wichtig und verhindert die Ablagerung von Kalzium in den Gefäßen. In anderen Worten: Es sorgt dafür, dass das Kalzium dort ankommt, wo es gebraucht wird. MPG wird unter anderem auch von Vitamin K2 aktiviert, worüber wir bereits einen ausführlichen Artikel verfasst haben.

Fällt der Vitamin D-Spiegel unter 30 ng/ml, was in der 2015 vom RKI publizierten Studie bei 88% der erfassten Deutschen der Fall war (7), so kann auch die Verkalkung des neu gebildeten Osteoids im Knochen und damit die Knochengesundheit nicht mehr gewährleistet werden (8). Eine Osteomalazie und Verschlechterung der Knochenstruktur sind damit vorprogrammiert.

Der Zusammenhang der Kalziumaufnahme mit dem Vitamin D-Spiegel wurde auch in einer älteren Studie mit insgesamt 944 gesunden Probanden nachgewiesen. Dort ist zwar von niedrigeren Vitamin D-Spiegeln (18 ng/ml) die Rede, die Schlussfolgerung bezieht sich jedoch auf die notwendige Kalziumzufuhr bei einem gewissen Vitamin D-Spiegel:

„Solange der Vitamin-D-Status sichergestellt ist, ist eine Kalziumaufnahme von mehr als 800 mg/Tag zur Aufrechterhaltung des Kalziumstoffwechsels nicht erforderlich. Vitamin-D-Präparate sind für einen angemessenen Vitamin-D-Status in nördlichen Klimazonen erforderlich“ (9).


Kalziumpräparate können Herzerkrankungen verursachen

Abb. 2: Herzerkrankung

Die 2011 in Heidelberg durchgeführte EPIC-Studie (10) untersuchte wie sich die Aufnahme von Kalzium und Kalziumpräparaten auf das Risiko eines Herzinfarktes, Schlaganfalls oder generell einer kardiovaskulären Erkrankung auswirkt. Die 23.980 Teilnehmer im Alter von 35-64 Jahren waren bei Beginn der Studie frei von kardiovaskulären Erkrankungen und wurden im Durchschnitt über 11 Jahre beobachtet.

Dabei zeigt sich bei der isolierten Einnahme von Kalzium-Monopräparaten ohne andere Nahrungsergänzungsmittel ein erhöhtes Risiko um den Faktor 2,4 einen Herzinfarkt zu manifestieren. Wurden Kalziumpräparate mit anderen Präparaten kombiniert, dann war das Risiko immer noch um 86% höher, als bei den Studienteilnehmern, die keine Kalziumprodukte einnahmen.

Die moderate Kalziumzuführung von 820 mg/Tag über die Nahrung senkte das Risiko eines Herzinfarktes jedoch um 30% !

Diese Zuführungsmenge sollte mit einer großteils ausgewogenen Ernährung kein Problem darstellen.

Eine weitere 2013 veröffentlichte Studie (11) des amerikanischen Instituts für Gesundheit (NIH) unterstreicht ebenfalls das Risiko für Männer an Kalziumpräparaten durch Herzerkrankungen zu versterben. Hierbei wurden 388.229 Probanden 12 Jahre lang beobachtet. Bei einer täglichen Einnahme von 1000 mg Kalzium als Supplement wurde eine um 20% höhere Sterblichkeit bei Männern durch Herzerkrankungen festgestellt. Die Kalziumaufnahme rein über die Nahrung war auch bei dieser Studie ausdrücklich nicht mit einer höheren Sterblichkeit durch Herzerkrankungen verbunden.

Auch bei Frauen erhöhte sich in einer placebokontrollierten Studie das Risiko durch Kalziumpräparate sowohl mit als auch ohne zusätzlichem Vitamin D, durch einen Herzinfarkt zu versterben um 24% (12).


Sango Meereskoralle

Oft werden wir gefragt, ob die Sango Meerekoralle aufgrund des relativ hohen Kalziumanteils Gefahren der Arterienverkalkung in Kombination mit der Einnahme von Vitamin D birgt.

Die Sango Meereskoralle hat in der Regel einen Kalziumgehalt von 20%, der aber ergänzt wird durch 10% Magnesiumanteil und anderen Mengen- und Spurenelementen. Folgt man den Einnahmeempfehlungen der Hersteller, die sich auf eine Zufuhrmenge von 3g täglich beziehen, so addiert sich die tägliche Zuführungsdosierung von Kalzium dadurch auf 600 mg täglich, was eher eine überschaubare Menge darstellt. Zusätzlich sorgt der Gegenspieler und Kofaktor von Kalzium, nämlich das Magnesium in der Sango Meereskoralle für zahlreiche positive Effekte, die wir in einem eigenen Artikel aufbereit haben.

Aufgrund der überschaubaren Menge an Kalzium und dem Zusammenspiel mit dem Magnesium, das laut aktuellem Wissenstand im optimalen Verhältnis von 2:1 vorhanden sein sollte, scheint eine erhöhte Gefahr von Gefäßverkalkungen durch die langfristige Einnahme eher unwahrscheinlich. Bei einer insgesamt extrem kalziumhaltigen Ernährungsweise könnte dies eventuell anders aussehen. Um auf Nummer Sicher zu gehen, empfiehlt sich ohnehin eine zusätzliche Einnahme von Vitamin K2, über das wir ebenfalls einen ausführlichen Artikel erstellt haben. Vitamin K2 ist nämlich nicht nur essentiell wichtig für den Transport des Kalziums in die Knochen, sondern schützt auch gleichzeitig die Gefäße vor Verkalkungen (13).

Die Einnahme der Sango Meereskoralle kann also bei kalziumarmer Ernährungsweise unterstützend wirken. Optimalerweise wird die benötigte Kalzium-Menge von 800-1000 mg/Tag aber über die Ernährung aufgenommen.


Fazit: Kalzium ist ein wichtiger Kofaktor von Vitamin D und für die Knochen und viele andere Funktionen von großer Bedeutung. Eine regelrechte Kalziumversorgung findet 1. über die Nahrung und 2. über einen adäquaten Vitamin D-Spiegel statt. Eine tägliche Zufuhr zwischen 800 – 1000 mg ist über die Ernährung ohne weiteres zu zu erreichen. Kalziumpräparate sind daher bei einer ausgewogenen Ernährungsweise in der Regel nicht notwendig. Bei dennoch festgestelltem Kalzium-Mangel sollte vor einer ärztlich angeordneten (!) Kalzium-Einnahme zunächst ein eventuell vorliegender Vitamin D-Mangel behoben werden, der Ursache für eine gestörte Kalzium-Aufnahme sein kann. Eine Kalzium-Supplementierung ohne vorliegenden Mangel kann Herzerkrankungen verursachen.

Quellen:

  1. Kuwabara, A., & Tanaka, K. (2015, November). The role of gastro-intestinal tract in the calcium absorption. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26503863
  2. Bronner, F. (2002). Mechanisms of intestinal calcium absorption. Journal of Cellular Biochemistry, 88(2), 387–393. doi: 10.1002/jcb.10330
  3. Christakos, S. (2012). Recent advances in our understanding of 1,25-dihydroxyvitamin D3 regulation of intestinal calcium absorption. Archives of Biochemistry and Biophysics, 523(1), 73–76. doi: 10.1016/j.abb.2011.12.020
  4. Heaney, R. P., Dowell, M. S., Hale, C. A., & Bendich, A. (2003). Calcium Absorption Varies within the Reference Range for Serum 25-Hydroxyvitamin D. Journal of the American College of Nutrition, 22(2), 142–146. doi: 10.1080/07315724.2003.10719287
  5. Ginde, A. A., Wolfe, P., Camargo, C. A., & Schwartz, R. S. (2012, January). Defining vitamin D status by secondary hyperparathyroidism in the U.S. population. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21606669.
  6. van Ballegooijen, A. J., Beulens, J. W. J., Schurgers, L. J., de Koning, E. J., Lips, P., van Schoor, N. M., & Vervloet, M. G. (2019, January 22). Effect of 6-Month Vitamin D Supplementation on Plasma Matrix Gla Protein in Older Adults. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30678199
  7. Rabenberg, Martina; Scheidt-Nave, Christa; Busch, Markus A.; Rieckmann, Nina; Hintzpeter, Birte; Mensink, Gert B. M. (2015): Vitamin D status among adults in Germany–results from the German Health Interview and Examination Survey for Adults (DEGS1). In: BMC public health 15, S. 641. DOI: 10.1186/s12889-015-2016-7.
  8. Domarus, Christoph von; Brown, Jonathan; Barvencik, Florian; Amling, Michael; Pogoda, Pia (2011): How much vitamin D do we need for skeletal health? In: Clinical orthopaedics and related research 469 (11), S. 3127–3133.
  9. Steingrimsdottir, L. (2005). Relationship Between Serum Parathyroid Hormone Levels, Vitamin D Sufficiency, and Calcium Intake. Jama, 294(18), 2336. doi: 10.1001/jama.294.18.2336
  10. Li, K., Kaaks, R., Linseisen, J., & Rohrmann, S. (2012, June 15). Associations of dietary calcium intake and calcium supplementation with myocardial infarction and stroke risk and overall cardiovascular mortality in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition study (EPIC-Heidelberg). Retrieved from https://heart.bmj.com/content/98/12/920.long
  11. Xiao, Q., Murphy, R. A., Houston, D. K., Harris, T. B., Chow, W.-H., & Park, Y. (2013, April 22). Dietary and supplemental calcium intake and cardiovascular disease mortality: the National Institutes of Health-AARP diet and health study. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23381719
  12. Bolland, M. J., Grey, A., Avenell, A., Gamble, G. D., & Reid, I. R. (2011, April 19). Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21505219
  13. Schurgers, L. J., Spronk, H. M., Soute, B. A., Schiffers, P. M., Demey, J. G., & Vermeer, C. (2007). Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood. doi:10.1182/blood-2006-07-035345

Bilder:

Titelbild von Imo Flow auf Pixabay 

Abb. 1: von Joey Hajda auf Pixabay

Abb. 2: Bild von Pexels auf Pixabay

10 einfache und wirksame Ratschläge für den persönlichen Schutz vor Infektionen, ob Corona oder andere

Bei aller Diskussion über die Angemessenheit der derzeitigen die Zivilgesellschaft stark einschränkenden Maßnahmen, wird oft vergessen, dass man selbst einige wenige, aber wirksame Maßnahmen ergreifen kann, um optimal vor Coronaviren und anderen Erregern geschützt zu sein. Das bedeutet ausdrücklich nicht, dass man damit einen hundertprozentigen Schutz hat, aber die Wahrscheinlichkeit einer Erkrankung ist deutlich niedriger und der Verlauf im Allgemeinen milder. Ferner beugen die unter den Punkten drei bis zehn aufgeführten Maßnahmen – unabhängig von der aktuellen Corona-Problematik – nachweislich der Entwicklung von Zivilisationskrankheiten vor, deren Ausmaß uns inzwischen weit mehr belastet als die Infektionskrankheiten.

Im Folgenden finden Sie eine Auflistung von 10 von uns als sinnvoll erachteten Maßnahmen (klicken Sie hier um die Liste als PDF herunterzuladen). Sofern Dosierungen angegeben werden, beziehen sich diese auf einen Erwachsenen mit 70 Kg Körpergewicht:

 

  1. Hygiene: häufiges gründliches Händewaschen mit (echter) Seife (siehe z.B.: https://www.infektionsschutz.de/haendewaschen/). Desinfektionsmittel im Übermaß sind eher schädlich (Schädigung der bakteriellen Hautflora).
  2. Abstand halten bei allen Gelegenheiten, wo der Verdacht auf irgendeine Atemwegsinfektion besteht und insbesondere von Personengruppen, die besonders gefährdet sind. Dies sind Menschen über 60, Personen mit supprimiertem oder geschädigtem Immunsystem, z.B. mit Cortison behandelte Personen, Menschen mit Autoimmunerkrankungen, die das Immunsystem unterdrückende Medikamente einnehmen, Diabetiker, Bluthochdruckpatienten, Krebspatienten, generell Personen mit schweren Vorerkrankungen (an dieser Stelle ist die Infografik aus diesem Spiegel-Artikel sehr hilfreich).
  3. Den Vitamin D Spiegel auf einen Blutwert zwischen 40 – 60 ng/ml bringen bzw. halten. Als Erhaltungsdosis wären das für einen Erwachsenen in etwa 5000 IE/d  (siehe auch: Vitamin D-Einnahme).
  4. Magnesium als Kofaktor zu Vitamin D supplementieren (400 mg/Tag; siehe auch: Vitamin D-Co-Faktor: Magnesium)
  5. Für die Dauer der Infektionsperiode Zink supplementieren (20 – 25 mg/Tag)
  6. Alkoholkonsum minimieren, besser einstellen (vom Rauchen gar nicht zu reden)
  7. Moderaten Sport, möglichst an der freien Natur, alleine oder zu zweit und nicht in Gruppen, betreiben (keine Überanstrengung, diese schädigt das Immunsystem)
  8. Sonnenbad in der Mittagszeit (20 min), dabei unbedingt auf genügend hohe Temperaturen achten und vor Zug schützen (die UV-Strahlung in der Sonne trägt zu dieser Zeit im Jahre – Oktober bis April – nicht nur zur Vitamin D-Bildung bei, aber tötet Viren und Bakterien ab).
  9. Viel Gemüse und rote Beeren essen, 250 mg Vitamin C über den Tag verteilt supplementieren (im Idealfall als Ester-C) oder reichlich Vitamin-C-reiche Früchte konsumieren
  10. Omega 3-reiche Nahrung zu sich nehmen (fetter Seefisch, Algenöl)

 

Mit diesen 10 Maßnahmen, die preiswert und teilweise kostenlos sind, helfen Sie sich selbst und auch Ihren Mitmenschen. Hier können Sie die Liste auch im PDF-Format downloaden. Geben Sie die Infos weiter und leben Sie sie selbst vor. Sie tragen im besten Fall dazu bei, dass sich die derzeitige Infektionswelle abschwächt und vor allem auch viele zukünftige Infektionserkrankungen ohne dramatische Konsequenzen überstanden werden können.

Auf diese Art aktiv zu werden, beseitigt zusätzlich das Gefühl der Machtlosigkeit und ist somit ein elftes Element in unserer Maßnahmenliste.

In diesem Sinne wünschen wir Ihnen, dass Sie gesund und zuversichtlich bleiben!

Ihr

Prof. Dr. med. Jörg Spitz

Mehr Infos unter: www.spitzen-praevention.com und https://www.youtube.com/channel/UCnyhvHRJCpLb7L8WzxEaSlg

Vitamin D-Co-Faktor: Kalzium

Kalzium spielt eine wichtige Rolle im Knochenstoffwechsel, wo es auch gemeinsam mit Vitamin D interagiert. Der Mineralstoff wird außerdem für verschiedene zelluläre Prozesse benötigt, wie zum Beispiel die Muskel- und Gefäßkontraktion, Nervenimpulsübertragung, aber auch für die Herz-, Nieren- und Lungenfunktion sowie die Blutgerinnung und das Hormonsystem. Doch sollte Kalzium  zusammen mit Vitamin D oder gar als Monopräparat eingenommen werden? Unsere Antworten finden Sie in diesem Artikel.


Der Artikel in Kürze:

> Wege der Kalziumaufnahme

> Kalziumaufnahme und Steuerung

> Arterienverkalkungen durch Kalzium

> Ist die Sango Meereskoralle gefährlich?


Wege der Kalziumaufnahme

Kalzium wird vornehmlich über die Ernährung aufgenommen und sollte dem Körper laut offiziellen nationalen und internationalen Empfehlungen mit 800-1000 mg pro T

ag zugeführt werden. Proteingebundenes Kalzium aus Lebensmitteln wird im Magen durch die Magensäure freigesetzt, ehe es im Darm resorbiert werden kann (1). Eine intakte Magensäure ist also wichtig, damit eine effektive Kalziumaufnahme im Darm stattfinden kann.

Das Kalzium wird nach der Freisetzung im Darm über 2 verschiedene Transportmechanismen resorbiert (2,3):

  1. Über den transzellulären aktiven Transport: Dieser findet bei niedriger bis normaler Kalziumzufuhr größtenteils im Zwölffingerdarm und im oberen Leerdarm statt und ist vom aktiven Vitamin D (Calcitriol) abhängig. Ist der Vitamin D-Spiegel im Blut zu niedrig, kann dieser Prozess nicht ordnungsgemäß ablaufen.
  2. Über den parazellulären passiven Transport, der über die gesamte Länge des Darms mittels eines Diffusionsmechanismus funktioniert.

Am Beispiel einer Interventionsstudie lässt sich die Verbesserung des Vitamin D-Spiegels auf die Kalziumaufnahme veranschaulichen. Zwei Vergleichsgruppen wurden dabei mit kalziumarmer Ernährung und relativ niedrig dosierten Kalziumpräparaten versorgt, wobei eine der beiden Gruppen mit Vitamin D versorgt wurde. Trotz der Tatsache, dass der mittlere Vitamin D-Spiegel in der Gruppe ohne Vitamin D-Supplementierung mit 20 ng/ml den offiziellen Empfehlungen der Vitamin D-Versorgung entsprach, konnte die Vitamin D-Gruppe mit Spiegeln von 34,4 ng/ml signifikante 65% mehr Kalzium absorbieren (4). Welche Vitamin D-Werte wir als ausreichend betrachten, können Sie hier nachlesen >>


Die Rolle von Vitamin D bei der Kalziumaufnahme und -steuerung für unsere Knochengesundheit

Abb. 1: Knochen

Kalzium wird zum überwiegendem Teil in den Knochen und Zähnen gespeichert und bei Bedarf, für die in der Einleitung genannten Funktionen, freigesetzt. Um die Kalziumkonzentration im Blut nach oben hin zu regulieren, sorgt ein erhöhter PTH-Spiegel im Blut für die Mobilisierung des in den Knochen gespeicherten Kalziums. Dies geschieht aber nur dann, wenn zu wenig Kalzium über den Darm aufgenommen werden kann, was in den meisten Fällen durch einen Vitamin D-Mangel verursacht wird. Bleibt dieser Zustand über längere Zeit aufrecht, führt dies zu Osteomalazie, Osteoporose, Rachitis bei Kindern oder Zahnschmelzverlust und anderen degenerativen Erscheinungen.

Bezeichnenderweise finden sich die niedrigsten Parathormonwerte bei Vitamin D-Spiegeln von > 40 ng/ml aufwärts (5).

Denn Vitamin D ist ein wesentlicher Faktor bei der aktiven, transzellulären Aufnahme von Kalzium im Darm, aber auch die Steuerung des Knochenminerals ist vom Sonnenhormon abhängig. Wenn die Gefahr eines Kalziummangels besteht, sollte also zuallererst der Vitamin D-Spiegel kontrolliert werden. Denn nur falls bei einem regelrechten Vitamin D-Spiegel von über 40 ng/ml, immer noch ein Kalziummangel vorhanden ist, macht eine Supplementation oder Medikation mit dem Mineralstoff Sinn.

Vitamin D steuert Kalzium indirekt auch dahingehend, als dass es die Konzentration des sogenannten Matrix-Gla-Proteins (MPG) positiv beeinflusst (6). MPG ist für die Einlagerung des Kalziums in die Knochen wichtig und verhindert die Ablagerung von Kalzium in den Gefäßen. In anderen Worten: Es sorgt dafür, dass das Kalzium dort ankommt, wo es gebraucht wird. MPG wird unter anderem auch von Vitamin K2 aktiviert, worüber wir bereits einen ausführlichen Artikel verfasst haben.

Fällt der Vitamin D-Spiegel unter 30 ng/ml, was in der 2015 vom RKI publizierten Studie bei 88% der erfassten Deutschen der Fall war (7), so kann auch die Verkalkung des neu gebildeten Osteoids im Knochen und damit die Knochengesundheit nicht mehr gewährleistet werden (8). Eine Osteomalazie und Verschlechterung der Knochenstruktur sind damit vorprogrammiert.

Der Zusammenhang der Kalziumaufnahme mit dem Vitamin D-Spiegel wurde auch in einer älteren Studie mit insgesamt 944 gesunden Probanden nachgewiesen. Dort ist zwar von niedrigeren Vitamin D-Spiegeln (18 ng/ml) die Rede, die Schlussfolgerung bezieht sich jedoch auf die notwendige Kalziumzufuhr bei einem gewissen Vitamin D-Spiegel:

„Solange der Vitamin-D-Status sichergestellt ist, ist eine Kalziumaufnahme von mehr als 800 mg/Tag zur Aufrechterhaltung des Kalziumstoffwechsels nicht erforderlich. Vitamin-D-Präparate sind für einen angemessenen Vitamin-D-Status in nördlichen Klimazonen erforderlich“ (9).


Kalziumpräparate können Herzerkrankungen verursachen

Abb. 2: Herzerkrankung

Die 2011 in Heidelberg durchgeführte EPIC-Studie (10) untersuchte wie sich die Aufnahme von Kalzium und Kalziumpräparaten auf das Risiko eines Herzinfarktes, Schlaganfalls oder generell einer kardiovaskulären Erkrankung auswirkt. Die 23.980 Teilnehmer im Alter von 35-64 Jahren waren bei Beginn der Studie frei von kardiovaskulären Erkrankungen und wurden im Durchschnitt über 11 Jahre beobachtet.

Dabei zeigt sich bei der isolierten Einnahme von Kalzium-Monopräparaten ohne andere Nahrungsergänzungsmittel ein erhöhtes Risiko um den Faktor 2,4 einen Herzinfarkt zu manifestieren. Wurden Kalziumpräparate mit anderen Präparaten kombiniert, dann war das Risiko immer noch um 86% höher, als bei den Studienteilnehmern, die keine Kalziumprodukte einnahmen.

Die moderate Kalziumzuführung von 820 mg/Tag über die Nahrung senkte das Risiko eines Herzinfarktes jedoch um 30% !

Diese Zuführungsmenge sollte mit einer großteils ausgewogenen Ernährung kein Problem darstellen.

Eine weitere 2013 veröffentlichte Studie (11) des amerikanischen Instituts für Gesundheit (NIH) unterstreicht ebenfalls das Risiko für Männer an Kalziumpräparaten durch Herzerkrankungen zu versterben. Hierbei wurden 388.229 Probanden 12 Jahre lang beobachtet. Bei einer täglichen Einnahme von 1000 mg Kalzium als Supplement wurde eine um 20% höhere Sterblichkeit bei Männern durch Herzerkrankungen festgestellt. Die Kalziumaufnahme rein über die Nahrung war auch bei dieser Studie ausdrücklich nicht mit einer höheren Sterblichkeit durch Herzerkrankungen verbunden.

Auch bei Frauen erhöhte sich in einer placebokontrollierten Studie das Risiko durch Kalziumpräparate sowohl mit als auch ohne zusätzlichem Vitamin D, durch einen Herzinfarkt zu versterben um 24% (12).


Sango Meereskoralle

Oft werden wir gefragt, ob die Sango Meerekoralle aufgrund des relativ hohen Kalziumanteils Gefahren der Arterienverkalkung in Kombination mit der Einnahme von Vitamin D birgt.

Die Sango Meereskoralle hat in der Regel einen Kalziumgehalt von 20%, der aber ergänzt wird durch 10% Magnesiumanteil und anderen Mengen- und Spurenelementen. Folgt man den Einnahmeempfehlungen der Hersteller, die sich auf eine Zufuhrmenge von 3g täglich beziehen, so addiert sich die tägliche Zuführungsdosierung von Kalzium dadurch auf 600 mg täglich, was eher eine überschaubare Menge darstellt. Zusätzlich sorgt der Gegenspieler und Kofaktor von Kalzium, nämlich das Magnesium in der Sango Meereskoralle für zahlreiche positive Effekte, die wir in einem eigenen Artikel aufbereit haben.

Aufgrund der überschaubaren Menge an Kalzium und dem Zusammenspiel mit dem Magnesium, das laut aktuellem Wissenstand im optimalen Verhältnis von 2:1 vorhanden sein sollte, scheint eine erhöhte Gefahr von Gefäßverkalkungen durch die langfristige Einnahme eher unwahrscheinlich. Bei einer insgesamt extrem kalziumhaltigen Ernährungsweise könnte dies eventuell anders aussehen. Um auf Nummer Sicher zu gehen, empfiehlt sich ohnehin eine zusätzliche Einnahme von Vitamin K2, über das wir ebenfalls einen ausführlichen Artikel erstellt haben. Vitamin K2 ist nämlich nicht nur essentiell wichtig für den Transport des Kalziums in die Knochen, sondern schützt auch gleichzeitig die Gefäße vor Verkalkungen (13).

Die Einnahme der Sango Meereskoralle kann also bei kalziumarmer Ernährungsweise unterstützend wirken. Optimalerweise wird die benötigte Kalzium-Menge von 800-1000 mg/Tag aber über die Ernährung aufgenommen.


Fazit: Kalzium ist ein wichtiger Kofaktor von Vitamin D und für die Knochen und viele andere Funktionen von großer Bedeutung. Eine regelrechte Kalziumversorgung findet 1. über die Nahrung und 2. über einen adäquaten Vitamin D-Spiegel statt. Eine tägliche Zufuhr zwischen 800 – 1000 mg ist über die Ernährung ohne weiteres zu zu erreichen. Kalziumpräparate sind daher bei einer ausgewogenen Ernährungsweise in der Regel nicht notwendig. Bei dennoch festgestelltem Kalzium-Mangel sollte vor einer ärztlich angeordneten (!) Kalzium-Einnahme zunächst ein eventuell vorliegender Vitamin D-Mangel behoben werden, der Ursache für eine gestörte Kalzium-Aufnahme sein kann. Eine Kalzium-Supplementierung ohne vorliegenden Mangel kann Herzerkrankungen verursachen.


Quellen:

  1. Kuwabara, A., & Tanaka, K. (2015, November). The role of gastro-intestinal tract in the calcium absorption. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26503863
  2. Bronner, F. (2002). Mechanisms of intestinal calcium absorption. Journal of Cellular Biochemistry, 88(2), 387–393. doi: 10.1002/jcb.10330
  3. Christakos, S. (2012). Recent advances in our understanding of 1,25-dihydroxyvitamin D3 regulation of intestinal calcium absorption. Archives of Biochemistry and Biophysics, 523(1), 73–76. doi: 10.1016/j.abb.2011.12.020
  4. Heaney, R. P., Dowell, M. S., Hale, C. A., & Bendich, A. (2003). Calcium Absorption Varies within the Reference Range for Serum 25-Hydroxyvitamin D. Journal of the American College of Nutrition, 22(2), 142–146. doi: 10.1080/07315724.2003.10719287
  5. Ginde, A. A., Wolfe, P., Camargo, C. A., & Schwartz, R. S. (2012, January). Defining vitamin D status by secondary hyperparathyroidism in the U.S. population. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21606669.
  6. van Ballegooijen, A. J., Beulens, J. W. J., Schurgers, L. J., de Koning, E. J., Lips, P., van Schoor, N. M., & Vervloet, M. G. (2019, January 22). Effect of 6-Month Vitamin D Supplementation on Plasma Matrix Gla Protein in Older Adults. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30678199
  7. Rabenberg, Martina; Scheidt-Nave, Christa; Busch, Markus A.; Rieckmann, Nina; Hintzpeter, Birte; Mensink, Gert B. M. (2015): Vitamin D status among adults in Germany–results from the German Health Interview and Examination Survey for Adults (DEGS1). In: BMC public health 15, S. 641. DOI: 10.1186/s12889-015-2016-7.
  8. Domarus, Christoph von; Brown, Jonathan; Barvencik, Florian; Amling, Michael; Pogoda, Pia (2011): How much vitamin D do we need for skeletal health? In: Clinical orthopaedics and related research 469 (11), S. 3127–3133.
  9. Steingrimsdottir, L. (2005). Relationship Between Serum Parathyroid Hormone Levels, Vitamin D Sufficiency, and Calcium Intake. Jama, 294(18), 2336. doi: 10.1001/jama.294.18.2336
  10. Li, K., Kaaks, R., Linseisen, J., & Rohrmann, S. (2012, June 15). Associations of dietary calcium intake and calcium supplementation with myocardial infarction and stroke risk and overall cardiovascular mortality in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition study (EPIC-Heidelberg). Retrieved from https://heart.bmj.com/content/98/12/920.long
  11. Xiao, Q., Murphy, R. A., Houston, D. K., Harris, T. B., Chow, W.-H., & Park, Y. (2013, April 22). Dietary and supplemental calcium intake and cardiovascular disease mortality: the National Institutes of Health-AARP diet and health study. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23381719
  12. Bolland, M. J., Grey, A., Avenell, A., Gamble, G. D., & Reid, I. R. (2011, April 19). Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21505219
  13. Schurgers, L. J., Spronk, H. M., Soute, B. A., Schiffers, P. M., Demey, J. G., & Vermeer, C. (2007). Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood. doi:10.1182/blood-2006-07-035345

Bilder:

Titelbild von Imo Flow auf Pixabay 

Abb. 1: von Joey Hajda auf Pixabay

Abb. 2: Bild von Pexels auf Pixabay