Vitamin D – starke Wirkung gegen tödliche Krebsverläufe

Vitamin D – starke Wirkung gegen tödliche Krebsverläufe

VITAL-Studie enttäuscht: Vitamin D und Omega-3-Fettsäuren zeigen keine signifikante Wirkung in der Primärprävention bei Krebs.

So oder so ähnlich lauteten 2018 Meldungen zu den vermeintlich ernüchternden Ergebnissen der amerikanischen VITAL-Studien.

Eine aktuelle Sekundäranalyse der randomisierten klinischen VITAL-Studie aus dem November 2020 lässt die Wirkung von Vitamin D nun in neuem Licht erscheinen.

Die VITAL-Studie ist, zumindest in Bezug auf die Supplementation von Vitamin D und Omega 3, als Paradebeispiel für ein unzureichendes Studien-Design bekannt. Denn bei dieser Langzeituntersuchung wurden Vergleichsgruppen zwar mit unterschiedlich hohen Vitamin D- und Omega 3-Dosierungen supplementiert, aber die Differenz der Vitamin D-Zuführung der beiden Gruppen lag bei lediglich 1200 I.E./Tag.

Ferner hatten zu Beginn der Studie beide Gruppen Vitamin D-Werte von über 30 ng/ml im Mittel, was deutlich über dem Wert des Bevölkerungsquerschnittes liegt und daher nicht repräsentativ ist.

Unter diesen Umständen konnte eigentlich mit keiner großen Wirkung von Vitamin D gerechnet werden und doch bringen die Ergebnisse der Subgruppen-Analyse von 25.871 Untersuchten Erstaunliches zutage:

Bezogen auf tödliche und metastasierende Krebsverläufe wurde in der Subgruppenanalyse Folgendes festgestellt:

  • 17% geringeres Risiko für Probanden der Vitamin D-Gruppe allgemein inkl. Übergewichtigen
  • 38% geringeres Risiko für Probanden der Vitamin D-Gruppe mit normalem BMI von unter 25
  • Kaum Auswirkungen auf das Risiko von übergewichtigen Menschen

Trotz der geringen Dosierung und der überdurchschnittlich hohen Vitamin D-Werte zu Beginn der Behandlung, sprechen die Ergebnisse deutlich für eine Vitamin D- und Omega 3-Supplementation zur Krebs-Prävention, zum anderen zeigen die fehlenden Auswirkungen bei Übergewichtigen, dass diese eine höhere Dosis benötigen.

Fazit:

Auch bei Probanden, die den Vitamin D-Mangelgrenzwert von 30 ng/ml übertreffen, hilft eine um 1200 I.E. höhere Vitamin D-Dosierung, das Risiko für einen tödlichen und metastasierenden Krebsverlauf bei Normalgewichtigen (BMI < 25) um 35% zu reduzieren.

Darüber hinaus kann davon ausgegangen werden, dass eine Supplementation in höheren Mengen noch bessere Ergebnisse erzielt hätte. Die SonnenAllianz empfiehlt daher zur Prävention Vitamin D-Spiegel von 40-60 ng/ml, im Krankheitsfall auch mehr. Hier geht's zu unserem Vitamin D-Bedarfsrechner.


Der aktuelle Buchtipp:

Im neuen von der Akademie für menschliche Medizin veröffentlichten Vitamin D-Buch von Prof. Dr. Jörg Spitz und Sebastian Weiß finden Sie umfangreiche Recherchen zum Thema Krebs und Vitamin D. Darüber hinaus werden im Buch viele andere Krankheitsbilder und Covid-19 intensiv beleuchtet:

In Bezug auf die aktuelle Covid-19-Pandemie hat außer Vitamin D keine andere Einzelsubstanz eine dreifache Wirkung auf die Erkrankung:

1. Vitamin D hemmt die Vermehrung und Ausbreitung des Virus im Körper durch ein eigenes Antibiotikum (Cathelicidin), gegen das Erreger keine Resistenz entwickeln können.

2. Vitamin D verhindert den fatalen Sturm entzündungsfördernder Zytokine in der Lunge, indem entzündungshemmende Botenstoffe gebildet werden.

3. Vitamin D reduziert zusätzlich die riskanten Co-Morbiditäten wie Übergewicht, Diabetes und Asthma, die für einen fatalen Ausgang der Covid-19-Erkrankungen verantwortlich sind.

 

Es gibt zunehmend gute Argumente dafür, dass die verbesserte Vitamin D-Versorgung der Bevölkerung durch Sommersonne und Supplementation den Verlauf der Pandemie in Deutschland positiv beeinflusst hat. Vor allem hat der mittlere Vitamin-D-Spiegel in der älteren deutschen Bevölkerung um 40% innerhalb von zehn Jahren zugenommen! Alle Aussagen in diesem Buch sind durch mehr als 450 Quellenangaben belegt.

Das aktuelle Vitamin D-Buch finden Sie u.a hier...!

Quellen:

Chandler PD; Chen WY; Ajala ON; Hazra A; Cook N; Bubes V; Lee IM; Giovannucci EL; Willett W; Buring JE; Manson JE; (n.d.). Effect of Vitamin D3 Supplements on Development of Advanced Cancer: A Secondary Analysis of the VITAL Randomized Clinical Trial. Retrieved December 23, 2020, from https://pubmed.ncbi.nlm.nih.gov/33206192/

Titelbildquelle:

Image by Angiola Harry from unsplash.com

Vitamin D – Immer wenn es um Leben und Tod geht!

Literaturverzeichnis

Kapitel 1 – Kein Leben ohne Sonne

  1. Dobzhansky T (1973). Nothing in Biology Makes Sense Except in the Light of Evolution, American Biology Teacher, 35 (3): 125–129, JSTOR 4444260; reprinted in Zetterberg, J. Peter, ed. (1983), Evolution versus Creationism, Phoenix, Arizona: ORYX Press
  2. Planet-Schule: https://www.planet-schule.de/mm/die-erde/Barrierefrei/pages/Die_Anfaenge_der_Erde.html
  3. Bernhard Kegel: Die Herrscher der Welt. Wie Mikroben unser Leben bestimmen. ISBN 978-3832197735, DuMont Buchverlag, Köln 2015
  4. Sven Böttcher: Rette sich, wer kann: Das Krankensystem meiden und gesund bleiben. ISBN 978-3954716388, ABOD Verlag, München 2019
  5. Peter C. Gøtzsche: Tödliche Medizin und organisierte Kriminalität: Wie die Pharmaindustrie unser Gesundheitswesen korrumpiert. ISBN 978-3742311610, Riva Verlag, München 2019
  6. Dr. Gerd Reuther: Der betrogene Patient: Ein Arzt deckt auf, warum Ihr Leben in Gefahr ist, wenn Sie sich medizinisch behandeln lassen. ISBN 978-3742310347, Riva Verlag, München 2019
  7. Ulrike von Aufschnaiter: Deutschlands Kranke Kinder: Wie auf Anweisung der Regierung Kitas und Schulen die Gesundheit unserer Kinder schädigen. ISBN 978-3748262374, tredition Verlag, Hamburg 2019
  8. Eva Herman: Die Wahrheit und ihr Preis: Meinung, Macht und Medien. ISBN 978-3942016285, Kopp Verlag, Rottenburg a.N. 2010
  9. Rainer Mausfeld: Warum schweigen die Lämmer? ISBN 978-3864892776, Westend Verlag, Wiesbaden 2019

Abb.1: enriquelopezgarre, www.pixabay.com

Abb.2: Emde Grafik, Copyright AMM

Kapitel 2 – Nationaler und internationaler Vitamin D-Mangel

  1. National Center for Biotechnology Information. PubMed Single Citation Matcher [homepage on the Internet]: U.S. National Library of Medicine; National Institutes of Health; 2008. Internet: http://www.ncbi.nlm.nih.gov/entrez/query/static/citmatch.html (updated 09 May 2008; accessed 14 Jul 2008)
  2. Hintzpeter B, Mensink GB et al. Vitamin D status and health correlates among German adults. European journal of clinical nutrition 2007
  3. Hintzpeter, B et al. Zitat 3: Eigenschaft des Vitamin D im Kindesalter. Proceedings of the German Nutrition Society 10 2007;10:47
  4. Hintzpeter B, Scheidt-Nave C et al. Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. J Nutr. 2008 Aug;138(8):1482-90
  5. Puri S, Agarwala N et al. Vitamin D status of apparently healthy schoolgirls from two different socioeconomic strata in Delhi: relation to nutrition and lifestyle. British Journal of Nutrition 2008;99(4):876–82
  6. Hyppönen E, Power C. Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. The American journal of clinical nutrition 2007;85(3):860–8
  7. Woo J, Lam CW et al. Very high rates of vitamin D insufficiency in women of child-bearing age living in Beijing and Hong Kong. The British Journal of Nutrition 2008;99(6):1330–4
  8. Islam MZ, Akhtaruzzaman M, Lamberg-Allardt C. Hypovitaminosis D is common in both veiled and nonveiled Bangladeshi women. Asia Pacific journal of clinical nutrition 2006;15(1):81–7.
  9. Scheidt-Nave C, Hintzpeter B et al (2015). Vitamin D status among adults in Germany–results from the German Health Interview and Examination Survey for Adults (DEGS1). In: BMC public health 15, S. 641. DOI: 10.1186/s12889-015-2016-7
  10. Robert Koch-Institut, Berlin – Gert B.M. Mensink, Clarissa Lage Barbosa, Anna-Kristin Brettschneider. Journal of Health Monitoring 2016 1(2) DOI 10.17886/RKI-GBE-2016-033
  11. Göthel, Christopher (2020, May 08). Entwicklung der Epidemiologie und der jahreszeitlichen Abhängigkeit des Vitamin-D-Status in Deutschland in den Jahren 2007 bis 2019. Retrieved June 25, 2020, from https://tore.tuhh.de/handle/11420/6400
  12. Mehany S, Pöppelmeyer C et al.  Niedrige Vitamin-D-Blutspiegel in Wiener Schulkindern. EDDY Studie, Aktuel Ernahrungsmed 2015; 40 – P2_3. DOI: 10.1055/s-0035-1550200
  13. Gellert S, Strohle A et al (2017). Higher prevalence of vitamin D deficiency in German pregnant women compared to non-pregnant women. In: Archives of gynecology and obstetrics 296 (1), S. 43–51. DOI: 10.1007/s00404-017-4398-5
  14. Cashman KD, Gonzalez-Gross M et al (2016). Vitamin D deficiency in Europe: pandemic? Retrieved from https://academic.oup.com/ajcn/article/103/4/1033/4662891
  15. Li H, Xiao P et al (2020). Widespread vitamin D deficiency and its sex-specific association with adiposity in Chinese children and adolescents. Nutrition, 71, 110646. DOI: 10.1016/j.nut.2019.110646
  16. Mirfakhraee S et al (2017).  Longitudinal changes in serum 25-hydroxyvitamin D in the Dallas Heart Study. Clin Endocrinol (Oxf)
  17. Galior K, Ketha H et al (2018). 10 years of 25-hydroxyvitamin-D testing by LC-MS/MS-trends in vitamin-D deficiency and sufficiency. Bone Reports, 8, 268–273. DOI: 10.1016/j.bonr.2018.05.003
  18. Cashman KD, Kiely M (2018). Contribution of nutrition science to the vitamin D field—Clarity or confusion? The Journal of Steroid Biochemistry and Molecular Biology. DOI:10.1016/j.jsbmb.2018.10.020

Kapitel 3 – Der Vitamin D-Stoffwechsel 

  1. Holick MF. Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry 1971;10(14):2799–804
  2. Lawson DEM, Fraser DR, Kodicek E, Morris HR, Williams DH. Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature 1971;230(5291):228.230
  3. Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life sciences 1975;16(3):353–62
  4. Die Bedeutung der Vitamin D – Vitamin D-Rezeptor-Achse in der Aktivierung der humanen hepatischen Sternzellen; https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00038454/Dissertation_Beilfuss.pdf
  5. DeLuca HF, Darwish HM, Ross TK, Moss VE. Mechanism of action of 1,25-dihydroxyvitamin D on target gene expression. Journal of nutritional science and vitaminology 1992;19-26
  6. Kauer H. Vitamin D in Immunologie und Onkologie – Eine Literaturstudie. [Dissertation]. München: LMU München; 09.02.2007
  7. Hollis BW et al (2013). The Role of the Parent Compound Vitamin D with Respect to Metabolism and Function: Why Clinical Dose Intervals Can Affect Clinical Outcomes. In: The Journal of clinical endocrinology and metabolism 98 (12), S. 4619–4628. DOI: 10.1210/jc.2013-2653
  8. Ginde AA, Wolfe P et al. Defining vitamin D status by secondary hyperparathyroidism in the U.S. population, Journal of Endocrinological Investigation 2012, 35, pages 42–48
  9. Domarus C, Brown J et al. How much vitamin D do we need for skeletal health? In: Clinical orthopaedics and related research 469 (2011), S. 3127–3133
  10. Hollis BW et al (2015). Maternal Versus Infant Vitamin D Supplementation During Lactation: A Randomized Controlled Trial. In: Pediatrics 136 (4), S. 625–634. DOI: 10.1542/peds.2015-1669
  11. Hollis BW, Wagner CL et al (2006). High-dose vitamin D3 supplementation in a cohort of breastfeeding mothers and their infants: a 6-month follow-up pilot study. In: Breastfeeding medicine: the official journal of the Academy of Breastfeeding Medicine 1 (2), S. 59–70. DOI: 10.1089/bfm.2006.1.59
  12. Dawodu A, Salameh KM et al (2019). The Effect of High-Dose Postpartum Maternal Vitamin D Supplementation Alone Compared with Maternal Plus Infant Vitamin D Supplementation in Breastfeeding Infants in a High-Risk Population. A Randomized Controlled Trial. Nutrients, 11(7), 1632. DOI:10.3390/nu11071632
  13. Garland CF, Kim JJ et al (2014). Meta-analysis of all-cause mortality according to serum 25-hydroxyvitamin D. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24922127
  14. Teixeira DS, Nobrega YKM et al (2012). Evaluation of 25-hydroxy-vitamin D and parathyroid hormone in Callithrix penicillata primates living in their natural habitat in Brazil. Journal of Medical Primatology, 41(6), 364–371. DOI: 10.1111/jmp.12021
  15. Power ML, Dittus WP (2017). Vitamin D status in wild toque macaques (Macaca sinica) in Sri Lanka. American Journal of Primatology, 79(6). DOI:10.1002/ajp.22655
  16. Luxwolda MF, Kuipers, RS et al (2012). Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. British Journal of Nutrition, 108(9), 1557–1561. DOI: 10.1017/s0007114511007161
  17. Shirvan A, Holick MF et al (2019). Disassociation of Vitamin D’s Calcemic Activity and Non-calcemic Genomic Activity and Individual Responsiveness: A Randomized Controlled Double-Blind Clinical Trial. Scientific Reports, 9(1). DOI: 10.1038/s41598-019-53864-1
  18. Shaat N, Kristensen K et al (2020). Association between the rs1544410 polymorphism in the vitamin D receptor (VDR) gene and insulin secretion after gestational diabetes mellitus. Plos One, 15(5). DOI: 10.1371/journal.pone.0232297
  19. Pereira‐Santos M, Oliveira AM et al (2019). Polymorphism in the vitamin D receptor gene is associated with maternal vitamin D concentration and neonatal outcomes: A Brazilian cohort study. American Journal of Human Biology. DOI: 10.1002/ajhb.23250
  20. Abd-Elsalam S, Mohamed A, El-Adawy E et al (2019). Association of serum level of vitamin D and VDR polymorphism Fok1 with the risk or survival of pancreatic cancer in Egyptian population. Indian Journal of Cancer, 56(2), 130. DOI: 10.4103/ijc.ijc_299_18
  21. Yang SK, Song N, Zhang H et al (2019). Association of Vitamin D Receptor Gene Polymorphism With the Risk of Nephrolithiasis. Therapeutic Apheresis and Dialysis, 23(5), 425–436. DOI: 10.1111/1744-9987.12797
  22. Ahmed J, Makonnen E et al (2019). Vitamin D Status and Association of VDR Genetic Polymorphism to Risk of Breast Cancer in Ethiopia. Nutrients, 11(2), 289. DOI: 10.3390/nu11020289
  23. Carlberg C, Haq A (2016). The concept of the personal vitamin D response index. In: The Journal of steroid biochemistry and molecular biology. DOI: 10.1016/j.jsbmb.2016.12.011
  24. Finamor DC, Sinigaglia-Coimbra R et al (2013). A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. In: Dermato-endocrinology 5 (1), S. 222–234. DOI: 10.4161/derm.24808

Videoempfehlung: Fit mit Fett – ein Leben lang – Vortrag von Prof. Dr. med. Jörg Spitz

https://www.youtube.com/watch?v=xwSPLAkkRYc

Abb. 2: siehe Nr. 9

Kapitel 4 – Kofaktoren für Vitamin D

  1. Schimatschek HF, Rempis R (2001). Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnesium research: official organ of the International Society for the Development of Research on Magnesium, 14. Jg., Nr. 4, S. 283-290
  2. Rosanoff A, Weaver CM et al (2012). Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutrition reviews 70.3: 153-164
  3. Medalle R, Waterhouse C et al (1976). Vitamin D resistance in magnesium deficiency. The American Journal of Clinical Nutrition, 29(8), 854-858. DOI:10.1093/ajcn/29.8.854
  4. Theuwissen E, Cranenburg EC et al (2012). Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. British Journal of Nutrition, 108(09), 1652-1657. DOI:10.1017/s0007114511007185
  5. Kim S, Kim K et al (2010). Correlation of Undercarboxylated Osteocalcin (ucOC) Concentration and Bone Density with Age in Healthy Korean Women. Journal of Korean Medical Science, 25(8), 1171. DOI:10.3346/jkms.2010.25.8.1171
  6. Nakano T, Tsugawa N et al (2011). High prevalence of hypovitaminosis D and K in patients with hip fracture. Department of Health and Nutrition, Osaka Shoin Women’s University, 4-2-26 Hishiyanishi, Higashiosaka-shi, Osaka 577-8550 Japan
  7. Fujita Y, Iki M et al (2011). Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: The Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporosis International, 23(2), 705-714. DOI:10.1007/s00198-011-1594-1
  8. Iwamoto J, Sato Y et al (2009). High-dose vitamin K supplementation reduces fracture incidence in postmenopausal women: A review of the literature. Nutrition Research, 29(4), 221-228. DOI:10.1016/j.nutres.2009.03.012
  9. Yamaguchi M (2010). Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation. International Journal of Molecular Medicine. DOI:10.3892/ijmm.2010.562
  10. Forli L, Bollerslev J et al (2010). Dietary Vitamin K2 Supplement Improves Bone Status After Lung and Heart Transplantation. Transplantation, 89(4), 458-464. DOI:10.1097/tp.0b013e3181c46b69
  11. Booth SL, Gundberg C et al (2004). Associations between Vitamin K Biochemical Measures and Bone Mineral Density in Men and Women. The Journal of Clinical Endocrinology & Metabolism, 89(10), 4904-4909. DOI:10.1210/jc.2003-031673
  12. Gröber U, Holick MF et al (2013). Vitamin D. Dermato-Endocrinology, 5(3), 331-347. DOI:10.4161/derm.26738
  13. Cantorna MT, Snyder L et al (2019). Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Critical Reviews in Biochemistry and Molecular Biology, 54(2), 184–192. DOI: 10.1080/10409238.2019.1611734

Titelbild: Gerd Altmann, www.pixabay.com

Kapitel 5 – Die Bedeutung von Vitamin D am Anfang des Lebens

  1. Voulgaris N, Papanastasiou L et al (2017). Vitamin D and aspects of female fertility. In: Hormones (Athens, Greece) 16 (1), S. 5–21. DOI: 10.14310/horm.2002.1715
  2. Miliku K, Burne TH et al (2016). Maternal vitamin D concentrations during pregnancy, fetal growth patterns, and risks of adverse birth outcomes. In: The American journal of clinical nutrition 103 (6), S. 1514–1522. DOI: 10.3945/ajcn.115.123752
  3. Qin LL, Fang-Guo Y et al (2016). Does Maternal Vitamin D Deficiency Increase the Risk of Preterm Birth: A Meta-Analysis of Observational Studies. In: Nutrients 8 (5). DOI: 10.3390/nu8050301
  4. Cantorna MT, Mahon BD (2004). Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. In: Experimental biology and medicine (Maywood, N.J.) 229 (11), S. 1136–1142
  5. Dankers W, Edgar M et al (2016). Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. In: Frontiers in immunology 7, S. 697. DOI: 10.3389/fimmu.2016.00697
  6. Gellert S, Bitterlich N et al (2017). Higher prevalence of vitamin D deficiency in German pregnant women compared to non-pregnant women. In: Archives of gynecology and obstetrics 296 (1), S. 43–51. DOI: 10.1007/s00404-017-4398-5
  7. Wagner CL, Baggerly C et al (2016). Post-hoc analysis of vitamin D status and reduced risk of preterm birth in two vitamin D pregnancy cohorts compared with South Carolina March of Dimes 2009-2011 rates. In: The Journal of steroid biochemistry and molecular biology 155 (Pt B), S. 245–251. DOI: 10.1016/j.jsbmb.2015.10.022
  8. Hollis BW, Wagner CL (2013). The Role of the Parent Compound Vitamin D with Respect to Metabolism and Function: Why Clinical Dose Intervals Can Affect Clinical Outcomes. In: The Journal of clinical endocrinology and metabolism 98 (12), S. 4619–4628. DOI: 10.1210/jc.2013-2653
  9. Holick MF,  Bischoff-Ferrari HA et al (2011). Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. In: The Journal of clinical endocrinology and metabolism 96 (7), S. 1911–1930. DOI: 10.1210/jc.2011-0385
  10. GrassrootsHealth Nutrient Research Institute (2018): https://www.grassrootshealth.net/wp-content/uploads/2017/01/MRIP-chart-booklet-08-2018.pdf
  11. Hollis BW, Wagner CL et al (2015). Maternal Versus Infant Vitamin D Supplementation During Lactation: A Randomized Controlled Trial. In: Pediatrics 136 (4), S. 625–634. DOI: 10.1542/peds.2015-1669
  12. Wagner CL, Hollis BW et al (2006). High-dose vitamin D3 supplementation in a cohort of breastfeeding mothers and their infants: a 6-month follow-up pilot study. In: Breastfeeding medicine: the official journal of the Academy of Breastfeeding Medicine 1 (2), S. 59–70. DOI: 10.1089/bfm.2006.1.59
  13.  Voulgaris N, Papanastasiou L et al (2017). Vitamin D and aspects of female fertility. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28500824
  14. Menichini D, Facchinetti F (2019). Effects of vitamin D supplementation in women with polycystic ovary syndrome: a review. Gynecological Endocrinology, 1–5. DOI: 10.1080/09513590.2019.1625881
  15. Gellert S, Bitterlich N et al (2017). Higher prevalence of vitamin D deficiency in German pregnant women compared to non-pregnant women. In: Archives of gynecology and obstetrics 296 (1), S. 43–51. DOI: 10.1007/s00404-017-4398-5
  16. Abulebda K, Abu-Sultaneh S, Lutfi R (2017. It is not always child abuse. Multiple fractures due to hypophosphatemic rickets associated with elemental formula use. In: Clinical case reports 5 (8), S. 1348–1351. DOI: 10.1002/ccr3.1052
  17. Cannell JJ, Holick MF (2018). Multiple unexplained fractures in infants and child physical abuse. In: The Journal of steroid biochemistry and molecular biology 175, S. 18–22. DOI: 10.1016/j.jsbmb.2016.09.012
  18. Ulrike von Aufschnaiter – Deutschlands Kranke Kinder: Wie auf Anweisung der Regierung Kitas und Schulen die Gesundheit unserer Kinder schädigen; ISBN 978-3748262374, tredition Verlag, Hamburg 2019
  19. Kühnisch J, Thiering E et al (2014). Elevated Serum 25(OH)-Vitamin D Levels Are Negatively Correlated with Molar-Incisor Hypomineralization. Journal of Dental Research, 94(2), 381–387. DOI: 10.1177/0022034514561657
  20. Schroth R, Moffat M et al (2015). Vitamin D and Dental Caries in Children. Journal of Dental Research, 95(2), 173–179. DOI: 10.1177/0022034515616335
  21. Wolsk HM, Harshfield BJ et al (2017). Vitamin D supplementation in pregnancy, prenatal 25(OH)D levels, race, and subsequent asthma or recurrent wheeze in offspring: Secondary analyses from the Vitamin D Antenatal Asthma Reduction Trial. In: The Journal of allergy and clinical immunology. DOI: 10.1016/j.jaci.2017.01.013

Titelbild: amyelizabethquinn, www.pixabay.com

Abb. 4: Creative Commons Attribution (CC BY 4.0)

Kapitel 6.1 – Vitamin D und Immunsystem

  1. Chirumbolo S, Bjorklund G et al (2017). The Role of Vitamin D in the Immune System as a Pro-survival Molecule. In: Clinical therapeutics 39 (5), S. 894–916. DOI: 10.1016/j.clinthera.2017.03.021
  2. Venturini E, Facchini L et al (2014). Vitamin D and tuberculosis. A multicenter study in children. In: BMC infectious diseases 14, S. 652. DOI: 10.1186/s12879-014-0652-7
  3. Arnedo-Pena A, Garcia-Ferrer D et al (2015). Vitamin D status and incidence of tuberculosis among contacts of pulmonary tuberculosis patients. In: The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease 19 (1), S. 65–69. DOI: 10.5588/ijtld.14.0348
  4. Villar LM, Del Campo JA et al (2013). Association between vitamin D and hepatitis C virus infection. A meta-analysis. In: World journal of gastroenterology 19 (35), S. 5917–5924. DOI: 10.3748/wjg.v19.i35.5917
  5. Garcia-Alvarez M, Pineda-Tenor D et al (2014). Relationship of vitamin D status with advanced liver fibrosis and response to hepatitis C virus therapy. A meta-analysis. In: Hepatology (Baltimore, Md.) 60 (5), S. 1541–1550. DOI: 10.1002/hep.27281
  6. Cusick SE, Polgreen LE et al (2014). Vitamin D insufficiency is common in Ugandan children and is associated with severe malaria. In: PloS one 9 (12), e113185. DOI: 10.1371/journal.pone.0113185
  7. Cannell JJ, Holick MF et al. Epidemic influenza and vitamin D. Epidemiology and infection 2006;134(6):1129–40
  8. Laaksi I, Ruohola JP et al. An association of serum vitamin D concentrations < 40 nmol/L with acute respiratory tract infection in young Finnish men. American Journal of Clinical Nutrition 2007;86(3):714–7
  9. Li Y C, Chen Y et al (2015). Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation. The Journal of Steroid Biochemistry and Molecular Biology, 148, 179–183. DOI: 10.1016/j.jsbmb.2015.01.011
  10. Dimitrov V, White JH (2017). Vitamin D signaling in intestinal innate immunity and homeostasis. Molecular and Cellular Endocrinology, 453, 68-78. DOI:10.1016/j.mce.2017.04.010
  11. Kocovska E, Gaughran F et al (2017). Vitamin-D Deficiency As a Potential Environmental Risk Factor in Multiple Sclerosis, Schizophrenia, and Autism. In: Frontiers in psychiatry 8, S. 47. DOI: 10.3389/fpsyt.2017.00047
  12. Gominak S. (2016). Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmunity. Medical Hypotheses, 94, 103-107. DOI:10.1016/j.mehy.2016.07.007
  13. Quraishi SA, Needleman JS et al (2015). Effect of Cholecalciferol Supplementation on Vitamin D Status and Cathelicidin Levels in Sepsis. Critical Care Medicine, 43(9), 1928–1937. DOI: 10.1097/ccm.0000000000001148
  14. Grant WB, Baggerly CA et al (2020). Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients, 12(4), 988. DOI:10.3390/nu12040988
  15. Kara M et al. Scientific Strabismus’ or Two Related Pandemics: COVID-19 & Vitamin D Deficiency. British Journal of Nutrition, 2020, pp. 1–20., DOI:10.1017/s0007114520001749
  16. Li X et al. Risk Factors for Severity and Mortality in Adult COVID-19 Inpatients in Wuhan. Journal of Allergy and Clinical Immunology, 2020, DOI:10.1016/j.jaci.2020.04.006
  17. Mark M. Alipio, Department of Radiologic Technology, College of Allied Health Sciences: Vitamin D supplementation could possibly improve clinical outcomes of patients infected with Coronavirus-2019 (Covid-2019), 2020
  18. Kaufman HW, Holick MF et al (2020). SARS-CoV-2-Positivitätsraten in Verbindung mit zirkulierenden 25-Hydroxyvitamin D-Spiegeln. PLoS ONE 15 (9): e0239252. https://doi.org/10.1371/journal.pone.0239252
  19. Radujkovic A, Hippchen T et al (2020). Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients, 12(9), 2757. doi:10.3390/nu12092757
  20. https://vitamindwiki.com/COVID-19+Coronavirus+can+most+likely+be+fought+by+Vitamin+D#Intervention
  21. Castillo M et al. (2020). Effect of Calcifediol Treatment and best Available Therapy versus best Available Therapy on Intensive Care Unit Admission and Mortality Among Patients Hospitalized for COVID-19: A Pilot Randomized Clinical study. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960076020302764?via%3Dihub
  22. Murdaca G, Tonacci A et al (2019). Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmunity Reviews, 18(9), 102350. DOI: 10.1016/j.autrev.2019.102350
  23. Acheson ED, Bachrach CA. The distribution of multiple sclerosis in U. S. veterans by birthplace. American journal of hygiene 1960;72:88–99
  24. Kurtzke JF. On the fine structure of the distribution of multiple sclerosis. Acta Neurol Scand. Acta neurologica Scandinavica 1967;43(3):257–82
  25. Dean G (1974). Diet And Geographical Distribution Of Multiple Sclerosis. The Lancet, 304(7894), 1445. DOI: 10.1016/s0140-6736(74)90091-9
  26. Munger KL, Hollis BW et al. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA, The Journal of the American Medical Association 2006;296(23):2832–8
  27. Van der Mei IA, Ponsonby AL et al. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. Journal of neurology 2007;254(5):581–90
  28. Kampman M, Wilsgaard T, Mellgren S. Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. Journal of neurology 2007;254(4):471–7
  29. Smolders J, Damoiseaux J et al. Vitamin D as an immune modulator in multiple sclerosis, a review. Journal of neuroimmunology 2008;194(1-2):7–17
  30. Niino M, Fukazawa T et al. Therapeutic potential of vitamin d for multiple sclerosis. Current medicinal chemistry 2008;15(5):499–505
  31. Smolders J, Moen SM et al (2011). Vitamin D in the healthy and inflamed central nervous system. Access and function. In: Journal of the neurological sciences 311 (1-2), S. 37–43. DOI: 10.1016/j.jns.2011.07.033
  32. Pierrot-Deseilligny C, Souberbielle JC (2017). Vitamin D and multiple sclerosis. An update. In: Multiple sclerosis and related disorders 14, S. 35–45. DOI: 10.1016/j.msard.2017.03.014
  33. Burton JM, Kimball S et al (2010). A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. In: Neurology 74 (23), S. 1852–1859. DOI: 10.1212/WNL.0b013e3181e1cec2
  34. Stewart N, Simpson S et al (2012). Interferon-  and serum 25-hydroxyvitamin D interact to modulate relapse risk in MS. Neurology, 79(3), 254–260. DOI: 10.1212/wnl.0b013e31825fded9
  35. Laursen JH, Sondergaard HB et al (2016). Vitamin D supplementation reduces relapse rate in relapsing-remitting multiple sclerosis patients treated with natalizumab. In: Multiple sclerosis and related disorders 10, S. 169–173. DOI: 10.1016/j.msard.2016.10.005
  36. Bjorksten F, Suoniemi I (1976). Dependence of immediate hypersensitivity on the month of birth. Clinical Experimental Allergy, 6(2), 165-171. DOI:10.1111/j.1365-2222.1976.tb01894.x
  37. Matsui T, Tanaka K et al (2019). Food allergy is linked to season of birth, sun exposure, and vitamin D deficiency. Allergology International, 68(2), 172-177. DOI:10.1016/j.alit.2018.12.003
  38. Sharief S, Jariwala S et al (2011). Vitamin D levels and food and environmental allergies in the United States: Results from the National Health and Nutrition Examination Survey 2005-2006. Journal of Allergy and Clinical Immunology, 127(5), 1195-1202. DOI:10.1016/j.jaci.2011.01.017
  39. Wu D et al. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Frontiers in Immunology, vol. 9, 2019, DOI:10.3389/fimmu.2018.03160
  40. Uwe Gröber, Orthomolekulare Medizin – Ein Leitfaden für Apotheker und Ärzte, ISBN 978-3804719279, Wissenschaftliche Verlagsgesellschaft, Stuttgart 2015
  41. Oliveira L et al. Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases. Mediators of Inflammation, vol. 2018, 2018, pp. 1–17., DOI:10.1155/2018/3067126
  42. Carr A, Maggini S. Vitamin C and Immune Function. Nutrients, vol. 9, no. 11, 2017, p. 1211., DOI:10.3390/nu9111211
  43. Wang Y, Washko W et al (1996). Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Retrieved from https://www.pnas.org/content/93/8/3704
  44. Cheng RZ. Can Early and High Intravenous Dose of Vitamin C Prevent and Treat Coronavirus Disease 2019 (COVID-19)? Medicine in Drug Discovery, vol. 5, 2020, p. 100028., DOI:10.1016/j.medidd.2020.100028
  45. Avery J, Hoffmann P. Selenium, Selenoproteins, and Immunity. Nutrients, vol. 10, no. 9, 2018, p. 1203., DOI:10.3390/nu10091203
  46. Gammoh NZ, Rink L. Zinc in Infection and Inflammation. Nutrients, vol. 9, no. 6, 2017, p. 624., DOI:10.3390/nu9060624
  47. Calabrese LH. Cytokine Storm and the Prospects for Immunotherapy with COVID-19. Cleveland Clinic Journal of Medicine, 2020, p. ccc008., DOI:10.3949/ccjm.87a.ccc008
  48. Miyajima M. Amino Acids: Key Sources for Immunometabolites and Immunotransmitters.  International Immunology, 2020, DOI:10.1093/intimm/dxaa019
  49. Shah AM et al. Glutamine Metabolism and Its Role in Immunity, a Comprehensive Review. Animals, vol. 10, no. 2, 2020, p. 326., DOI:10.3390/ani10020326

Titelbild 6.1.1: Ria Sopala, www. pixabay.com

Abb. 1: nach Nr. 1, mit freundlicher Genehmigung von Hevert GmbH

Titelbild 6.1.2: Colin Behrens, www.pixabay.com

Kapitel 6.2 – Vitamin D und Skelett und Knochen

  1. Gani LU, How CH (2015). PILL Series. Vitamin D deficiency. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545131/
  2. Dawson-Hughes B, Harris S et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. The New England journal of medicine 1997;337(10):670–6
  3. Wacker M, Holick M F (2013). Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571641/
  4. Kuwabara A, Tanaka K (2015). The role of gastro-intestinal tract in the calcium absorption. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26503863
  5. Bronner F (2002). Mechanisms of intestinal calcium absorption. Journal of Cellular Biochemistry, 88(2), 387–393. DOI: 10.1002/jcb.10330
  6. Christakos . (2012). Recent advances in our understanding of 1,25-dihydroxyvitamin D3 regulation of intestinal calcium absorption. Archives of Biochemistry and Biophysics, 523(1), 73–76. DOI: 10.1016/j.abb.2011.12.020
  7. Heaney RP, Dowell MS et al (2003). Calcium Absorption Varies within the Reference Range for Serum 25-Hydroxyvitamin D. Journal of the American College of Nutrition, 22(2), 142–146. DOI: 10.1080/07315724.2003.10719287
  8. Ginde AA, Wolfe P et al (2012). Defining vitamin D status by secondary hyperparathyroidism in the U.S. population. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21606669.
  9. Domarus C, Brown J et al (2011). How much vitamin D do we need for skeletal health? In: Clinical orthopaedics and related research 469 (11), S. 3127–3133
  10. Göthel C (2020). Entwicklung der Epidemiologie und der jahreszeitlichen Abhängigkeit des Vitamin-D-Status in Deutschland in den Jahren 2007 bis 2019. Retrieved June 25, 2020, from https://tore.tuhh.de/handle/11420/6400
  11. Björn B et al. Vitamin D Deficiency Induces Early Signs of Aging in Human Bone, Increasing the Risk of Fracture, Science Translational Medicine, 10 July 2013, 5/193, p. 193ra88

Titelbild: StockSnap, www.pixabay.com

Kapitel 6.3 – Vitamin D und Sport und Muskeln

  1. Zhang L, Quan M et al (2019). Effect of vitamin D supplementation on upper and lower limb muscle strength and muscle power in athletes: A meta-analysis. In: PloS one 14 (4), e0215826. DOI: 10.1371/journal.pone.0215826
  2. Montenegro KR, Cruzat V et al (2019). Mechanisms of vitamin D action in skeletal muscle. In: Nutrition Research Reviews, S. 1–13. DOI: 10.1017/S0954422419000064
  3. Dzik KP, Kaczor JJ (2019). Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. In: European journal of applied physiology 119 (4), S. 825–839. DOI: 10.1007/s00421-019-04104-x
  4. Aydın CG, Dinçel YM et al (2019). The effects of indoor and outdoor sports participation and seasonal changes on vitamin D levels in athletes. In: SAGE open medicine 7, 2050312119837480. DOI: 10.1177/2050312119837480
  5. Constantini NW, Arieli R et al (2010). High Prevalence of Vitamin D Insufficiency in Athletes and Dancers. Clinical Journal of Sport Medicine, 20(5), 368–371. DOI: 10.1097/jsm.0b013e3181f207f2
  6. Shuler FD, Wingate MK et al (2012). Sports Health Benefits of Vitamin D. Sports Health: A Multidisciplinary Approach, 4(6), 496–501. DOI: 10.1177/1941738112461621
  7. Forney LA, Earnest CP et al (2014). Vitamin D Status, Body Composition, and Fitness Measures in College-Aged Students. Journal of Strength and Conditioning Research, 28(3), 814–824. DOI: 10.1519/jsc.0b013e3182a35ed0
  8. Erem S (2019). Anabolic effects of vitamin D and magnesium in aging bone. In: The Journal of Steroid Biochemistry and Molecular Biology 193, S. 105400. DOI: 10.1016/j.jsbmb.2019.105400
  9. Reddy P, Edwards LR (2019). Magnesium Supplementation in Vitamin D Deficiency. In: American journal of therapeutics 26 (1), e124-e132. DOI: 10.1097/MJT.0000000000000538
  10. Trummer C, Schwetz V et al (2017). Effects of Vitamin D Supplementation on IGF-1 and Calcitriol: A Randomized-Controlled Trial. In: Nutrients 9 (6). DOI: 10.3390/nu9060623
  11. Gogulothu R, Nagar D et al (2019). Disrupted expression of genes essential for skeletal muscle fibre integrity and energy metabolism in Vitamin D deficient rats. The Journal of Steroid Biochemistry and Molecular Biology, 105525. DOI: 10.1016/j.jsbmb.2019.105525

Titelbild: Gentrit Sylejmani, www.unsplash.com

Kapitel 6.4 – Metabolisches Syndrom und Fettleber

  1. Moukayed M, Grant WB (2019). Linking the metabolic syndrome and obesity with vitamin D status: risks and opportunities for improving cardiometabolic health and well-being. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 12, 1437–1447. DOI: 10.2147/dmso.s176933
  2. Thomas GN, Bosch JA et al (2012). Vitamin D Levels Predict All-Cause and Cardiovascular Disease Mortality in Subjects With the Metabolic Syndrome: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Diabetes Care, 35(5), 1158–1164. DOI: 10.2337/dc11-1714
  3. Pan G-T, Guo J-F et al (2016). Vitamin D Deficiency in Relation to the Risk of Metabolic Syndrome in Middle-Aged and Elderly Patients with Type 2 Diabetes Mellitus. Journal of Nutritional Science and Vitaminology, 62(4), 213–219. DOI: 10.3177/jnsv.62.213
  4. Akter S, Eguchi M et al (2017). Serum 25-hydroxyvitamin D and metabolic syndrome in a Japanese working population: The Furukawa Nutrition and Health Study. Nutrition, 36, 26–32. DOI: 10.1016/j.nut.2016.02.024
  5. Ganji V, Sukik A et al (2019). Serum vitamin D concentrations are inversely related to prevalence of metabolic syndrome in Qatari women. BioFactors. DOI: 10.1002/biof.1572
  6. Schmitt EB, Nahas-Neto J et al (2018). Vitamin D deficiency is associated with metabolic syndrome in postmenopausal women. Maturitas, 107, 97–102. DOI: 10.1016/j.maturitas.2017.10.011
  7. Ganji V, Zhang X et al (2011). Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001–2006. The American Journal of Clinical Nutrition, 94(1), 225–233. DOI: 10.3945/ajcn.111.013516
  8. Ilaria C, Agata F et al (2017). Vitamin D Supplementation and Non-Alcoholic Fatty Liver Disease: Present and Future. Retrieved from https://www.mdpi.com/2072-6643/9/9/1015/htm
  9. Chen L-W, Chien, C-H et al (2019). Low vitamin D level was associated with metabolic syndrome and high leptin level in subjects with nonalcoholic fatty liver disease: a community-based study. BMC Gastroenterology, 19(1). DOI: 10.1186/s12876-019-1040-y
  10. Zhu C-G, Liu Y-X et al (2017). Active form of vitamin D ameliorates non-alcoholic fatty liver disease by alleviating oxidative stress in a high-fat diet rat model. Endocrine Journal, 64(7), 663–673. DOI: 10.1507/endocrj.ej16-0542
  11. Ma M, Long Q et al (2019). Active vitamin D impedes the progression of non-alcoholic fatty liver disease by inhibiting cell senescence in a rat model. Clinics and Research in Hepatology and Gastroenterology. DOI: 10.1016/j.clinre.2019.10.007
  12. Liu Y, Wang M et al (2020). Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. Life Sciences, 241, 117086. DOI: 10.1016/j.lfs.2019.117086

Titelbild: (Joenomias) Menno de Jong, www.pixabay.com

Kapitel 6.5 – Die Bedeutung von Vitamin D bei Zuckererkrankungen

  1. Ford ES, Bergmann MM et al (2009). Healthy Living Is the Best Revenge. Archives of Internal Medicine, 169(15), 1355. DOI: 10.1001/archinternmed.2009.237
  2. Soltesz G, Patterson CC, Dahlquist G, EURODIAB Study Group. Worldwide childhood type 1 diabetes incidence–what can we learn from epidemiology? Pediatric diabetes 2007;8(6):6–14
  3. Cadario F, Ricotti R et al (2018). Administration of vitamin D and high dose of omega 3 to sustain remission of type 1 diabetes. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29424911
  4. Hyppönen E, Läärä E et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001;358(9292):1500–3
  5. Zipitis CS, Akobeng AK. Vitamin D Supplementation in Early Childhood and Risk of Type 1 Diabetes: a Systematic Review and Meta-analysis. Archives of Disease in Childhood – Fetal and Neonatal Edition 2008;93(6):512–7
  6. Tuomilehto J et al. Genetic predisposition to obesity and lifestyle factors–the combined analyses of twenty-six known BMI-and fourteen known waist: hip ratio (WHR)-associated variants, Diabetologia 199; 42: 655 – 660; Ehehatt S., Neu A et al. for the DIARY Group: Diabetologie & Stoffwechsel 2006; 1
  7. Palomer X, González-Clemente JM et al. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes, obesity & metabolism 2008;10(2):185–97
  8. Alemzadeh R, Kichler J et al. Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism: clinical and experimental 2008;57(2):183–91
  9. Martins D, Wolf M et al. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey. Archives of internal medicine 2007;167(11):1159–65
  10. Pittas AG, Lau J et al. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. The Journal of clinical endocrinology and metabolism 2007;92(6):2017–29
  11. Hintzpeter B, Mensink GB et al. Vitamin D status and health correlates among German adults. European journal of clinical nutrition 2007
  12. Sugden JA, Davies JI et al. Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels. Diabetic medicine: a journal of the British Diabetic Association 2008;25(3):320–5
  13. Hafez M, Musa N et al (2017). Vitamin D status in Egyptian children with type 1 diabetes and the role of vitamin D replacement in glycemic control. In: Journal of pediatric endocrinology & metabolism. JPEM 30 (4), S. 389–394. DOI: 10.1515/jpem-2016-0292
  14. Verburg PE, Tucker G et al (2016). Seasonality of gestational diabetes mellitus. A South Australian population study. In: BMJ open diabetes research & care 4 (1), e000286. DOI: 10.1136/bmjdrc-2016-000286
  15. Zhang Y, Gong Y et al (2017). Vitamin D and gestational diabetes mellitus. A systematic review based on data free of Hawthorne effect. In: BJOG : an international journal of obstetrics and gynaecology. DOI: 10.1111/1471-0528.15060
  16. Gellert S, Bitterlich N et al (2017). Higher prevalence of vitamin D deficiency in German pregnant women compared to non-pregnant women. In: Archives of gynecology and obstetrics 296 (1), S. 43–51. DOI: 10.1007/s00404-017-4398-5
  17. Tamayo T, Rathmann W et al (2016). Prevalence of gestational diabetes and risk of complications before and after initiation of a general systematic two-step screening strategy in Germany (2012–2014). Diabetes Research and Clinical Practice, 115, 1–8. DOI: 10.1016/j.diabres.2016.03.001
  18. Park SK, Garland CF et al (2018). Plasma 25-hydroxyvitamin D concentration and risk of type 2 diabetes and pre-diabetes: 12-year cohort study. Plos One, 13(4). DOI: 10.1371/journal.pone.0193070
  19. Mirhosseini N, Vatanparast H et al (2017). The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control in Diabetic Patients. A Meta-Analysis. In: The Journal of clinical endocrinology and metabolism 102 (9), S. 3097–3110. DOI: 10.1210/jc.2017-01024
  20. Ekmekcioglu C, Haluza D, Kundi, M (2017). 25-Hydroxyvitamin D Status and Risk for Colorectal Cancer and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Epidemiological Studies. International Journal of Environmental Research and Public Health, 14(2), 127. DOI: 10.3390/ijerph14020127
  21. Tang H, Li D et al (2018). Effects of Vitamin D Supplementation on Glucose and Insulin Homeostasis and Incident Diabetes among Nondiabetic Adults: A Meta-Analysis of Randomized Controlled Trials. International Journal of Endocrinology, 2018, 1–9. DOI: 10.1155/2018/7908764
  22. Baggerly LL, Holick MF et al (2016). Incidence rate of type 2 diabetes is 50% lower in GrassrootsHealth cohort with median serum 25-hydroxyvitamin D of 41 ng/ml than in NHANES cohort with median of 22 ng/ml. In: The Journal of steroid biochemistry and molecular biology 155 (Pt B), S. 239–244. DOI: 10.1016/j.jsbmb.2015.06.013

Unter folgendem QR-Code bzw. Webadresse können Sie den im März 2020 stattgefundenen Kongress zum Thema Diabetes streamen oder downloaden:

https://digitalewelt.spitzen-praevention.com/

Titelbild: Leo_65, www.pixabay.com

Kapitel 6.6 – Vitamin D und pulmonale Erkrankungen

  1. Gesundheitsreport 2018 zu Arbeitsunfähigkeiten, zuletzt geprüft am 19.02.2019
  2. Bergman P, Lindh AU et al (2013). Vitamin D and Respiratory Tract Infections. A Systematic Review and Meta-Analysis of Randomized Controlled Trials. In: PloS one 8 (6), e65835. DOI: 10.1371/journal.pone.0065835
  3. Ramos-Martínez E, López-Vancell MR et al (2018). Reduction of respiratory infections in asthma patients supplemented with vitamin D is related to increased serum IL-10 and IFNγ levels and cathelicidin expression. In: Cytokine 108, S. 239–246. DOI: 10.1016/j.cyto.2018.01.001
  4. Zhu B, Xiao C et al (2015). Vitamin D deficiency is associated with the severity of COPD. A systematic review and meta-analysis. In: International journal of chronic obstructive pulmonary disease 10, S. 1907–1916. DOI: 10.2147/COPD.S89763
  5. Færk G, Çolak Y et al (2018). Low concentrations of 25-hydroxyvitamin D and long-term prognosis of COPD. A prospective cohort study. In: European journal of epidemiology 33 (6), S. 567–577. DOI: 10.1007/s10654-018-0393-9
  6. Malinovschi A, Masoero M et al (2014). Severe vitamin D deficiency is associated with frequent exacerbations and hospitalization in COPD patients. In: Respiratory research 15, S. 131. DOI: 10.1186/s12931-014-0131-0
  7. Botros RM, Abo Elyazed S et al (2018). Vitamin D Status in Hospitalized Chronically Ill Patients. In: Journal of the American College of Nutrition, S. 1–5. DOI: 10.1080/07315724.2018.1446194
  8. Khan DM, Ullah A et al (2017). Role of Vitamin D in reducing number of acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) patients. Pakistan Journal of Medical Sciences, 33(3). DOI: 10.12669/pjms.333.12397
  9. Pourrashid MH, Dastan F et al (2018). Role of Vitamin D Replacement on Health Related Quality of Life in Hospitalized Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985196/
  10. Pfeffer PE, Hawrylowicz CM (2018). Vitamin D in Asthma. Chest, 153(5), 1229-1239. DOI:10.1016/j.chest.2017.09.005
  11. Martineau A, Takeda A et al (2015). Vitamin D for the management of asthma. Cochrane Database of Systematic Reviews. DOI:10.1002/14651858.cd01151
  12. Ginde AA, Mansbach J et al (2009). Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. In: Archives of internal medicine 169 (4), S. 384–390. DOI: 10.1001/archinternmed.2008.560
  13. Camargo CA, Ganmaa D et al (2012). Randomized Trial of Vitamin D Supplementation and Risk of Acute Respiratory Infection in Mongolia. Pediatrics, 130(3). DOI: 10.1542/peds.2011-3029
  14. Urashima M, Segawa T et al (2010). Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. In: The American journal of clinical nutrition 91 (5), S. 1255–1260. DOI: 10.3945/ajcn.2009.29094
  15. Teutemacher H, Trötschler H et al. Pneumologie, Substitution von Vitamin D bei Patienten mit Asthma und COPD  – Vitamin D-Update 2011, Berlin – https://repository.publisso.de/resource/frl:4169394-1/data
  16. Krishnan E, Ponnusamy V, Sekar SP (2017). Trial of vitamin D supplementation to prevent asthma exacerbation in children. International Journal of Research in Medical Sciences, 5(6), 2734. DOI: 10.18203/2320-6012.ijrms20172479
  17. Martineau AR, Jolliffe DA et al (2017). Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. In: BMJ (Clinical research ed.) 356, i6583. DOI: 10.1136/bmj.i6583
  18. Hollis BW, Wagner CL (2013). The Role of the Parent Compound Vitamin D with Respect to Metabolism and Function: Why Clinical Dose Intervals Can Affect Clinical Outcomes. In: The Journal of clinical endocrinology and metabolism 98 (12), S. 4619–4628. DOI: 10.1210/jc.2013-2653
  19. Manson JAE, Cook NR et al for the VITAL Research Group (2019). Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. In: The New England Journal of Medicine  2019; 380:33-44. DOI: 10.1056/NEJMoa1809944
  20. Khalid AN, Ladha KS et al (2015). Association of Vitamin D Status and Acute Rhinosinusitis. Medicine, 94(40). DOI:10.1097/md.0000000000001447
  21. Agostoni C, Bresson JL et al. Vitamin D and contribution to the normal function of the immune system. Evaluation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006 (2015). In: EFSA Journal 13 (7), S. 4182, zuletzt geprüft am 15.06.2020

Titelbild: kalhh, www.pixabay.com

Kapitel 6.7 – Neurologie und psychiatrische Erkrankungen

  1. Stumpf WE, Privette TH. The steroid hormone of sunlight soltriol (vitamin D) as a seasonal regulator of biological activities and photoperiodic rhythms. The Journal of steroid biochemistry and molecular biology 1991;39(2):283–9
  2. Nataf S, Garcion E et al. 1,25 Dihydroxyvitamin D3 exerts regional effects in the central nervous system during experimental allergic encephalomyelitis. Journal of neuropathology and experimental neurology 1996;55(8):904–14
  3. Bemiss CJ, Mahon BD et al. Interleukin-2 is one of the targets of 1,25-dihydroxyvitamin D3 in the immune system. Archives of biochemistry and biophysics 2002;402:249–54
  4. Garcion E, Sindji L et al. Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system. Acta neuropathologica 2003;105(5):438–48
  5. Shinpo K, Kikuchi S et al. Effect of 1,25-dihydroxyvitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine. Journal of Neuroscience Research 200;62:374–82
  6. Tetich M, Leśkiewicz M et al. The third multidisciplinary conference on drug research, Piła 2002. Effects of 1alpha,25-dihydroxyvitamin D3 and some putative steroid neuroprotective agents on the hydrogen peroxide-induced damage in neuroblastoma-glioma hybrid NG108-15 cells. Acta poloniae pharmaceutica 2003;60(5):351–5
  7. Kauer H. Vitamin D in Immunologie und Onkologie – Eine Literaturstudie (Dissertation). München: LMU München; 09.02.2007
  8. Bivona G, Gambino CM et al (2019). Vitamin D and the nervous system. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31142227
  9. Kim J-E, Cho K-O (2019). Functional Nutrients for Epilepsy. Nutrients, 11(6), 1309. DOI: 10.3390/nu11061309
  10. Teagarden DL, Meador KJ, Loring DW (2014). Low vitamin D levels are common in patients with epilepsy. Epilepsy Research, 108(8), 1352–1356. DOI: 10.1016/j.eplepsyres.2014.06.008
  11. Chaudhuri JR, Mridula KR et al (2017). Association of 25-Hydroxyvitamin D Deficiency in Pediatric Epileptic Patients. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493830/
  12. Offermann G, Pinto V, Kruse R (1979). Antiepileptic Drugs and Vitamin D Supplementation. Epilepsia, 20(1), 3–15. DOI: 10.1111/j.1528-1157.1979.tb04771.x
  13. Shaikh AS, Guo X (2018). The Impact of Antiepileptic Drugs on Vitamin Levels in Epileptic Patients. Current Pharmaceutical Biotechnology, 19(8), 674–681. DOI: 10.2174/1389201019666180816104716
  14. Christiansen C, Rodbro P, Sjo O (1974). Anticonvulsant Action of Vitamin D in Epileptic Patients? A Controlled Pilot Study. Bmj, 2(5913), 258–259. DOI: 10.1136/bmj.2.5913.258
  15. Holló A, Clemens Z et al (2012). Correction of vitamin D deficiency improves seizure control in epilepsy: A pilot study. Epilepsy & Behavior, 24(1), 131–133. DOI: 10.1016/j.yebeh.2012.03.011
  16. Tombini M, Palermo A et al (2018). Calcium metabolism serum markers in adult patients with epilepsy and the effect of vitamin D supplementation on seizure control. Seizure, 58, 75–81. DOI: 10.1016/j.seizure.2018.04.008
  17. Degiorgio CM, Hertling D et al (2019). Safety and tolerability of Vitamin D3 5000 IU/day in epilepsy. Epilepsy & Behavior, 94, 195–197. DOI: 10.1016/j.yebeh.2019.03.001
  18. Kogan MD, Vladutiu CJ et al (2018). The Prevalence of Parent-Reported Autism Spectrum Disorder Among US Children. Pediatrics, 142(6). DOI: 10.1542/peds.2017-4161
  19. Vinkhuyzen AAE, Eyles DW et al (2018). Gestational vitamin D deficiency and autism spectrum disorder: BJPsych Open. Retrieved from https://www.cambridge.org/core/journals/bjpsych-open/article/gestational-vitamin-d-deficiency-and-autism-spectrum-disorder/339D73DC98FF9C2672A9A099D4F0F4F6
  20. Cannell JJ (2017). Vitamin D and autism, what’s new? Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28217829.
  21. Saad K, Abdel‐Rahman A et al (2019). Retraction: Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. Journal of Child Psychology and Psychiatry, 60(6), 711–711. DOI: 10.1111/jcpp.13076
  22. Hollis BW, Wagner CL (2012). Vitamin D and Pregnancy: Skeletal Effects, Nonskeletal Effects, and Birth Outcomes. Calcified Tissue International, 92(2), 128–139. DOI: 10.1007/s00223-012-9607-4
  23. Mazahery H, Conlon CA et al (2019). A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder. The Journal of Steroid Biochemistry and Molecular Biology, 187, 9–16. DOI: 10.1016/j.jsbmb.2018.10.017
  24. Yi L-F, Wen H-X et al (2017). Cardiac autonomic nerve function in obese school-age children. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28506342
  25. Canpolat U, Özcan F et al (2014). Impaired Cardiac Autonomic Functions in Apparently Healthy Subjects with Vitamin D Deficiency. Annals of Noninvasive Electrocardiology, 20(4), 378–385. DOI: 10.1111/anec.12233
  26. Qiu M, Wen H-X et al (2018). Effect of vitamin D deficiency on cardiac autonomic nerve function in obese pre-school children. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30210029
  27. Dogdus M, Burhan S et al (2019). Cardiac autonomic dysfunctions are recovered with vitamin D replacement in apparently healthy individuals with vitamin D deficiency. Annals of Noninvasive Electrocardiology, 24(6). DOI: 10.1111/anec.12677
  28. Tønnesen R, Schwarz P et al (2018). Modulation of the sympathetic nervous system in youngsters by vitamin-D supplementation. Physiological Reports, 6(7). DOI: 10.14814/phy2.13635
  29. Psychoreport 2019: Dreimal mehr Fehltage als 1997. (n.d.). Retrieved from https://www.dak.de/dak/bundesthemen/dak-psychoreport-2019-dreimal-mehr-fehltage-als-1997-2125486.html
  30. Rosen L, Knudson KH, Fancher P. Prevalence of seasonal affective disorder among U.S. Army soldiers in Alaska. Military medicine 2002;167(7):581–4
  31. Mersch PP, Middendorp HM et al. The prevalence of seasonal affective disorder in The Netherlands: a prospective and retrospective study of seasonal mood variation in the general population. Biological Psychiatry 1999;45(8):1013–22
  32. Mersch PP, Middendorp HM et al. Seasonal affective disorder and latitude: a review of the literature. Journal of affective disorders 1999;53(1):35–48
  33. Vieth R, Kimball S et al. Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients. Nutrition Journal 2004;3:8
  34. Wang J, Liu N et al (2018). Association between vitamin D deficiency and antepartum and postpartum depression: A systematic review and meta-analysis of  longitudinal studies. Archives of Gynecology and Obstetrics, 298, 1045–1059(2018)
  35. Spedding, Simon (2014). Vitamin D and depression. A systematic review and meta-analysis comparing studies with and without biological flaws. In: Nutrients 6 (4), S. 1501–1518. DOI: 10.3390/nu6041501
  36. McGrath J. Hypothesis: is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophrenia Research 1999;40(3):173-177(5)
  37. McGrath J, Saari K et al. Vitamin D supplementation during the first year of life and risk of schizophrenia: a Finnish birth cohort study. Schizophrenia Research 2004;67(2-3):237–45
  38. O’Loan J, Eyles DW, Kesby J, Ko P, McGrath JJ, Burne TH. Vitamin D deficiency during various stages of pregnancy in the rat; its impact on development and behaviour in adult offspring. Psychoneuroendocrinology 2007;32(3):227–34.
  39. Cui X, McGrath JJ et al. Maternal vitamin D depletion alters neurogenesis in the developing rat brain. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 2007;25(4):227–32
  40. Kocovska E, Gaughran F et al (2017). Vitamin-D Deficiency As a Potential Environmental Risk Factor in Multiple Sclerosis, Schizophrenia, and Autism. In: Frontiers in psychiatry 8, S. 47. DOI: 10.3389/fpsyt.2017.00047

Titelbild: Sabine Zierer, www.pixabay.com

Abb. 3: DAK-Report 2018, siehe Nr. 29

Kapitel 7.1 – Erkrankungen des Herzens und der Gefäße

  1. Michos ED, Melamed ML. Vitamin D and cardiovascular disease risk. Current opinion in clinical nutrition and metabolic care 2008;11(1):7–12
  2. Abdi-Ali A, Nicholl DDm et al (2013). 25-Hydroxyvitamin D status, arterial stiffness and the renin–angiotensin system in healthy humans. Clinical and Experimental Hypertension, 36(6), 386–391. DOI: 10.3109/10641963.2013.827705
  3. Sunbul M (2016). Arterial stiffness parameters associated with vitamin D deficiency and supplementation in patients with normal cardiac functions. Turk Kardiyoloji Dernegi Ars. 2016; 44(4): 281-288. DOI: 10.5543/tkda.2015.93237
  4. Gillor A, Groneck P et al. Congestive heart failure in rickets caused by vitamin D deficiency. Monatsschrift Kinderheilkunde: Organ der Deutschen Gesellschaft für Kinderheilkunde 1989;13(2):108–10
  5. Brunvand L, Hågå P et al. Congestive heart failure caused by vitamin D deficiency? Acta paediatrica (Oslo, Norway : 1992) 1995;84(1):106–8
  6. Wang TJ, Pencina MJ et al. Vitamin D Deficiency and Risk of Cardiovascular Disease. Circulation 2008;117(4):503–11
  7. Crowe FL, Thayakaran R et al (2019). Non-linear associations of 25-hydroxyvitamin D concentrations with risk of cardiovascular disease and all-cause mortality: Results from The Health Improvement Network (THIN) database. The Journal of Steroid Biochemistry and Molecular Biology, 195, 105480. DOI: 10.1016/j.jsbmb.2019.105480
  8. Gholami F, Moradi G et al (2019). The association between circulating 25-hydroxyvitamin D and cardiovascular diseases: a meta-analysis of prospective cohort studies. BMC Cardiovascular Disorders, 19(1). DOI: 10.1186/s12872-019-1236-7
  9. Forman JP, Giovannucci E et al. Plasma 25-Hydroxyvitamin D Levels and Risk of Incident Hypertension. Hypertension 2007;49(5):1063–9
  10. Pfeifer M, Begerow B et al. Effects of a Short-Term Vitamin D3 and Calcium Supplementation on Blood Pressure and Parathyroid Hormone Levels in Elderly Women. The Journal of Clinical Endocrinology & Metabolism 2001;86(4):1633–7
  11. Sugden JA, Davies JI et al. Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels. Diabetic medicine: a journal of the British Diabetic Association 2008;25(3):320–5
  12. Carlin AM, Rao DS et al. Effect of gastric bypass surgery on vitamin D nutritional status. Surgery for obesity and related diseases: official journal of the American Society for Bariatric Surgery 2006;2(6):638–42
  13. Carlin AM, Yager KM, Rao DS. Vitamin D depletion impairs hypertension resolution after Roux-en-Y gastric bypass. American journal of surgery 2008;195(3):349–52
  14. Melamed ML, Muntner P et al. Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: results from NHANES 2001 to 2004. Arteriosclerosis, thrombosis, and vascular biology 2008;28(6):1179–85
  15. Raed A, Bhagatwala J et al. (2017). Dose responses of vitamin D3 supplementation on arterial stiffness in overweight African Americans with vitamin D deficiency. A placebo controlled randomized trial. In: PloS one 12 (12), e0188424. DOI: 10.1371/journal.pone.0188424
  16. Shirvani A, Holick MF et al (2019). Disassociation of Vitamin D’s Calcemic Activity and Non-calcemic Genomic Activity and Individual Responsiveness: A Randomized Controlled Double-Blind Clinical Trial. Scientific Reports, 9(1). DOI: 10.1038/s41598-019-53864-1
  17. Yuan J, Jia P et al (2019). Vitamin D deficiency is associated with risk of developing peripheral arterial disease in type 2 diabetic patients. BMC Cardiovascular Disorders, 19(1). DOI:10.1186/s12872-019-1125-0
  18. Rai V, Agrawal DK (2017). Role of Vitamin D in Cardiovascular Diseases. In: Endocrinology and metabolism clinics of North America 46 (4), S. 1039–1059. DOI: 10.1016/j.ecl.2017.07.009
  19. Giovannucci E, Hollis BW et al. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Archives of internal medicine 2008;168(11):1174–80
  20. Dobnig H, Pilz S et al. Independent Association of Low Serum 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D Levels With All-Cause and Cardiovascular Mortality. Archives of internal medicine 2008;168(12):1340–9
  21. Zittermann A, Götting C et al. Poor outcome in end-stage heart failure patients with low circulating calcitriol levels. European journal of heart failure 2008;10(3):321–7
  22. Hsia J, Heiss G et al. Women’s Health Initiative Investigators. Calcium/vitamin D supplementation and cardiovascular eve. Circulation 2007;115(7):846–54
  23. Schleithoff S, Zittermann A et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. American Journal of Clinical Nutrition 2006;83(5):754–9
  24. Saponaro F, Saba A et al (2018). Vitamin D measurement and effect on outcome in a cohort of patients with heart failure. Endocrine Connections, 7(9), 957–964. DOI: 10.1530/ec-18-0207
  25. Gotsman I, Shauer A et al (2012). Vitamin D deficiency is a predictor of reduced survival in patients with heart failure; vitamin D supplementation improves outcome. European Journal of Heart Failure, 14(4), 357–366. DOI: 10.1093/eurjhf/hfr175
  26. Nolte K, Herrmann-Lingen C et al (2019). Vitamin D deficiency in patients with diastolic dysfunction or heart failure with preserved ejection fraction. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30784226
  27. Al-Khalidi B, Kimball SM et al (2017). Erratum to: Standardized serum 25-hydroxyvitamin D concentrations are inversely associated with cardiometabolic disease in U.S. adults: a cross-sectional analysis of NHANES, 2001–2010. Nutrition Journal, 16(1). DOI: 10.1186/s12937-017-0251-8
  28. Censani M, Hammad HT et al (2018). Vitamin D Deficiency Associated With Markers of Cardiovascular Disease in Children With Obesity. In: Global pediatric health 5, 2333794X17751773. DOI: 10.1177/2333794X17751773
  29. Skaaby T, Thuesen BH et al (2017). Vitamin D, Cardiovascular Disease and Risk Factors. In: Advances in experimental medicine and biology 996, S. 221–230. DOI: 10.1007/978-3-319-56017-5_18
  30. Al Mheid I, Quyyumi AA (2017). Vitamin D and Cardiovascular Disease. Controversy Unresolved. In: Journal of the American College of Cardiology 70 (1), S. 89–100. DOI: 10.1016/j.jacc.2017.05.031

Titelbild: Gerd Altmann, www.pixabay.com

Kapitel 7.2 – Onkologische Erkrankungen

  1. Pereira F, Larriba MJ, Muñoz A (2012). Vitamin D and colon cancer. Endocrine-Related Cancer, 19(3). DOI: 10.1530/erc-11-0388
  2. Wu X, Hu W et al  (2019). Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharmaceutica Sinica B, 9(2), 203-219. DOI:10.1016/j.apsb.2018.09.002
  3. Robien K, Cutler GJ, Lazovich D. Vitamin D intake and breast cancer risk in postmenopausal women: the Iowa Women’s Health Study. Cancer causes & control : CCC 2007;18(7):775–82
  4. Lin J, Manson JE et al (2007). Intakes of calcium and vitamin D and breast cancer risk in women. Archives of internal medicine 2007;167(10):1050–9
  5. Knight JA, Lesosky M et al (2007). Vitamin D and Reduced Risk of Breast Cancer: A Population-Based Case-Control Study. Cancer Epidemiology Biomarkers & Prevention 2007;16(3):422–9
  6. John EM, Schwartz GG et al (2007). Sun Exposure, Vitamin D Receptor Gene Polymorphisms, and Breast Cancer Risk in a Multiethnic Population. American Journal of Epidemiology 2007;166(12):1409–19
  7. Abbas S, Linseisen J et al (2008). Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer–results of a large case-control study. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17974532
  8. Goodwin PJ, Ennis M et al (2008). Frequency of vitamin D (Vit D) deficiency at breast cancer (BC) diagnosis and association with risk of distant recurrence and death in a prospective cohort study of T1-3, N0-1, M0 BC; 2008
  9. Madden JM, Murphy L et al (2018). De novo vitamin D supplement use post-diagnosis is associated with breast cancer survival. Breast Cancer Research and Treatment, 172(1), 179-190. DOI:10.1007/s10549-018-4896-6
  10. Zhu K, Knuiman M et al (2019). Lower serum 25-hydroxyvitamin D is associated with colorectal and breast cancer, but not overall cancer risk: A 20-year cohort study. Nutrition Research, 67, 100-107. DOI:10.1016/j.nutres.2019.03.010
  11. Song D, Deng Y et al (2019). Vitamin D intake, blood vitamin D levels, and the risk of breast cancer: a dose-response meta-analysis of observational studies. Aging, 11(24), 12708–12732. DOI: 10.18632/aging.102597331–347. DOI: 10.4161/derm.26738
  12. Gorham ED, Garland CF et al (2007). Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. In: American journal of preventive medicine 32 (3), S. 210–216. DOI: 10.1016/j.amepre.2006.11.004
  13. Freedman DM, Looker AC et al (2007). Prospective study of serum vitamin D and cancer mortality in the United States. In: Journal of the National Cancer Institute 99 (21), S. 1594–1602. DOI: 10.1093/jnci/djm204
  14. Ekmekcioglu C, Haluza D, Kundi M (2017). 25-Hydroxyvitamin D Status and Risk for Colorectal Cancer and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Epidemiological Studies. International Journal of Environmental Research and Public Health, 14(2), 127. DOI: 10.3390/ijerph14020127
  15. Garland CF, Gorham ED (2017). Dose-response of serum 25-hydroxyvitamin D in association with risk of colorectal cancer. A meta-analysis. In: The Journal of steroid biochemistry and molecular biology 168, S. 1–8. DOI: 10.1016/j.jsbmb.2016.12.003
  16. Maalmi H, Walter V et al (2017). Relationship of very low serum 25-hydroxyvitamin D3 levels with long-term survival in a large cohort of colorectal cancer patients from Germany. European Journal of Epidemiology, 32(11), 961-971. DOI:10.1007/s10654-017-0298-z
  17. Lappe JM, Travers-Gustafson D et al (2007). Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. In: The American journal of clinical nutrition 85 (6), S. 1586–1591
  18. Uwe Gröber, Jörg Spitz, Jörg Reichrath, Klaus Kisters, Michael F. Holick (2013). Vitamin D: Update 2013: From rickets prophylaxis to general preventive healthcare.        Dermatoendocrinol 2013 Jun 1;5(3):331-47. DOI: 10.4161/derm.26738
  19. Chiba A, Raman R et al (2017). Serum Vitamin D Levels Affect Pathologic Complete Response in Patients Undergoing Neoadjuvant Systemic Therapy for Operable Breast Cancer. In: Clinical breast cancer. DOI: 10.1016/j.clbc.2017.12.001

Titelbild: PDPics, www.pixabay.com

Kapitel 7.2.1 – Hautkrebs und Sonnenschutz

  1. https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/krebs_in_deutschland_inhalt.html;jsessionid=046232C5C19C14D64BDE90151A095BF4.1_cid290
  2. Matthews NH (2017). Epidemiology of Melanoma. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK481862/
  3. Veronique Bataille (2013). Melanoma. Shall we move away from the sun and focus more on embryogenesis, body weight and longevity? Medical Hypotheses 2013 Nov; 81(5): 846–850. DOI: 10.1016/j.mehy.2013.05.031
  4. Bataille V et al. (2005). A multicentre epidemiological study on sunbed use and cutaneous melanoma in Europe,  European Journal of Cancer. 2005 Sep;41(14):2141-9
  5. https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/krebs_in_deutschland_node.html
  6. Glusac EJ. (2011). The melanoma ‘epidemic’: Lessons from prostate cancer. Journal of Cutaneous Pathology, 39(1), 17-20. DOI:10.1111/j.1600-0560.2011.01848.x
  7. Jürgen Tacke (2015). Das deutsche Hautkrebsscreening: Vom Ende einer Illusion; Deutscher Ärzte-Verlag, Zeitschrift für Allgemeinmedizin, ZFA 7-2015; 91 (7/8)
  8. Gandini S, Sera F et al (2005). Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. European Journal of Cancer, 41(1), 45–60. DOI: 10.1016/j.ejca.2004.10.016
  9. Gandini S, Montella M et al for CLINICAL NATIONAL MELANOMA REGISTRY GROUP (2016).  Sun exposure and melanoma prognostic factors. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27073541
  10. Chang Y-M, Barrett JH et al (2009). Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls. International Journal of Epidemiology, 38(3), 814–830. DOI: 10.1093/ije/dyp166
  11. Alexander Wunsch: Die Kraft des Lichts: Warum wir gutes Licht brauchen und schlechtes Licht uns krank macht. ISBN 978-3742309112, Riva Verlag, München 2019
  12. Newton-Bishop JA, Beswick S et al (2009). Serum 25-Hydroxyvitamin D3 Levels Are Associated With Breslow Thickness at Presentation and Survival From Melanoma. Journal of Clinical Oncology, 27(32), 5439–5444. DOI: 10.1200/jco.2009.22.1135
  13. Berwick M, Armstrong B et al (2005). Sun Exposure and Mortality From Melanoma. JNCI: Journal of the National Cancer Institute, 97(23), 1791–1791. DOI: 10.1093/jnci/dji411
  14. Dixon K, Mason R et al (2013). Vitamin D and Death by Sunshine. International Journal of Molecular Sciences, 14(1), 1964–1977. DOI: 10.3390/ijms14011964
  15. Muralidhar S, Newton-Bishop J et al (2019). Vitamin D–VDR Signaling Inhibits Wnt/β-Catenin–Mediated Melanoma Progression and Promotes Antitumor Immunity. Cancer Research, 79(23), 5986–5998. DOI: 10.1158/0008-5472.can-18-3927
  16. Grigalavicius M, Moan J et al (2015). Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer. International Journal of Dermatology, 55(1). DOI: 10.1111/ijd.13065
  17. Reichrath J, Saternus R, Vogt T (2017). Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond. Molecular and Cellular Endocrinology, 453, 96–102. DOI: 10.1016/j.mce.2017.05.001
  18. Ince B, Yildirim MEC, Dadaci M (2019). Assessing the Effect of Vitamin D Replacement on Basal Cell Carcinoma Occurrence and Recurrence Rates in Patients with Vitamin D Deficiency. Hormones and Cancer, 10(4-6), 145–149. DOI: 10.1007/s12672-019-00365-2
  19. Some Sunscreen Ingredients May Disrupt Sperm Cell Function. (n.d.). Retrieved from https://www.endocrine.org/news-and-advocacy/news-room/2016/some-sunscreen-ingredients-may-disrupt-sperm-cell-function
  20. https://www.ewg.org/sunscreen/report/the-trouble-with-sunscreen-chemicals/
  21. Lorigo M, Martinez-De-Oliveira J et al (2019). UV-B Filter Octylmethoxycinnamate Induces Vasorelaxation by Ca2 Channel Inhibition and Guanylyl Cyclase Activation in Human Umbilical Arteries. International Journal of Molecular Sciences, 20(6), 1376. DOI: 10.3390/ijms20061376
  22. Lorigo M, Mariana M, Cairrao E (2018). Photoprotection of ultraviolet-B filters: Updated review of endocrine disrupting properties. Steroids, 131, 46–58. DOI: 10.1016/j.steroids.2018.01.006
  23. Lorigo M, Martinez-De-Oliveira J et al (2019). UV-B Filter Octylmethoxycinnamate Induces Vasorelaxation by Ca2 Channel Inhibition and Guanylyl Cyclase Activation in Human Umbilical Arteries. International Journal of Molecular Sciences, 20(6), 1376. DOI: 10.3390/ijms20061376
  24. Ruiz PA, Morón B et al (2016). Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut, 66(7), 1216–1224. DOI: 10.1136/gutjnl-2015-310297
  25. Cross SE, Innes B et al (2007). Human Skin Penetration of Sunscreen Nanoparticles: In-vitro Assessment of a Novel Micronized Zinc Oxide Formulation. Skin Pharmacology and Physiology, 20(3), 148-154. DOI:10.1159/000098701
  26. Lademann J, Weigmann H et al (1999). Penetration of Titanium Dioxide Microparticles in a Sunscreen Formulation into the Horny Layer and the Follicular Orifice. Skin Pharmacology and Physiology, 12(5), 247-256. DOI:10.1159/000066249
  27. Pflücker F, Wendel V et al (2001). The Human Stratum corneum Layer: An Effective Barrier against Dermal Uptake of Different Forms of Topically Applied Micronised Titanium Dioxide. Skin Pharmacology and Physiology, 14(1), 92-97. DOI:10.1159/000056396
  28. Leite-Silva V, Sanchez W et al (2016). Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment. European Journal of Pharmaceutics and Biopharmaceutics, 104, 140-147. DOI:10.1016/j.ejpb.2016.04.022
  29. Gulson B, McCall M et al (2010). Small Amounts of Zinc from Zinc Oxide Particles in Sunscreens Applied Outdoors Are Absorbed through Human Skin. Toxicological Sciences, 118(1), 140-149. DOI:10.1093/toxsci/kfq243

Titelbild: ardoramanda, www.pixabay.com

Abb. 3: Alexander Wunsch, sie Nr. 11

Kapitel 7.3 – Vitamin D auf der Intensivstation

  1. Braun A, Chang D et al (2011). Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill*. Critical Care Medicine, 39(4), 671–677. DOI: 10.1097/ccm.0b013e318206ccdf
  2. Moraes R, Friedman G et al (2015). Vitamin D deficiency is independently associated with mortality among critically ill patients. Clinics, 70(5), 326–332. DOI: 10.6061/clinics/2015(05)04
  3. Zapatero A, Nolla J et al (2018). Severe vitamin D deficiency upon admission in critically ill patients is related to acute kidney injury and a poor prognosis. Medicina Intensiva (English Edition), 42(4), 216–224. DOI: 10.1016/j.medine.2017.07.002
  4. Matthews LR, Ahmed Y et al (2012). Worsening severity of vitamin D deficiency is associated with increased length of stay, surgical intensive care unit cost, and mortality rate in surgical intensive care unit patients. The American Journal of Surgery, 204(1), 37–43. DOI: 10.1016/j.amjsurg.2011.07.021
  5. Khalili H, Alizadeh N et al (2015). Serum Vitamin D levels at admission predict the length of intensive care unit stay but not in-hospital mortality of critically ill surgical patients. Journal of Research in Pharmacy Practice, 4(4), 193. DOI: 10.4103/2279-042x.167051
  6. Moromizato T, Litonjua AA et al (2014). Association of Low Serum 25-Hydroxyvitamin D Levels and Sepsis in the Critically Ill. Critical Care Medicine, 42(1), 97–107. DOI: 10.1097/ccm.0b013e31829eb7af
  7. Shojaei M, Sabzeghabaei A et al (2019). The Correlation between Serum Level of Vitamin D and Outcome of Sepsis Patients; a Cross-Sectional Study. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377223/

Titelbild: sasint, www.pixabay.com

Kapitel 7.4 – Alter (Demenz und Gebrechlichkeit)

  1. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin d levels and bone mineral density: a population-based study of younger and older adults. The American journal of medicine 2004;116(9):634–9
  2. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. The New England journal of medicine 1997;337(10):670–6
  3. Chapuy MC, Arlot ME et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women 1992;327(23):1637–42
  4. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. Bmj 2003;326(7387):469
  5. Hirschfeld HP, Kinsella R, Duque G (2017). Osteosarcopenia. Where bone, muscle, and fat collide. In: Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 28 (10), S. 2781–2790. DOI: 10.1007/s00198-017-4151-8
  6. Arai H, Satake S, Kozaki K (2018). Cognitive Frailty in Geriatrics. Clinics in Geriatric Medicine, 34(4), 667-675. DOI:10.1016/j.cger.2018.06.011
  7. Proietti M, Cesari M (2020). Frailty: What Is It? Advances in Experimental Medicine and Biology Frailty and Cardiovascular Diseases, 1-7. DOI:10.1007/978-3-030-33330-0_1
  8. Erlandson KM, Guaraldi G, Falutz J (2016). More than osteoporosis. Age-specific issues in bone health. In: Current opinion in HIV and AIDS 11 (3), S. 343–350. DOI: 10.1097/COH.0000000000000258
  9. Laurent MR, Dubois V et al (2016). Muscle-bone interactions. From experimental models to the clinic? A critical update. In: Molecular and cellular endocrinology 432, S. 14–36. DOI: 10.1016/j.mce.2015.10.017
  10. Nguyen ND, Ahlborg HG et al (2007). Residual Lifetime Risk of Fractures in Women and Men. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2007;22(6):781–8
  11. Heike A. Bischoff-Ferrari: Fracture epidemiology in the elderly. In: Duque G, Kiel DP, editors. Osteoporosis in Older Persons. Pathophysiology and therapeutic approach. Springer 2008, page 97, ISBN 978-1-84628-697-1
  12. Bischoff-Ferrari HA, Can U et al (2008). Severe vitamin D deficiency in Swiss hip fracture patients. Bone 2008;42(3):597–602
  13. Magaziner J, Hawkes W et al (2000). Recovery from hip fracture in eight areas of function. The journals of gerontology. Series A, Biological sciences and medical sciences 2000;55(9):M498-507
  14. Tinetti ME, Williams CS. Falls, injuries due to falls, and the risk of admission to a nursing home. The New England journal of medicine 1997;337(18):1279–84
  15. Cummings SR, Kelsey JL et al. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiologic reviews 1985;7:178–208
  16. Birge SJ, Morrow-Howell N, Proctor EK. Hip fracture. Clinics in geriatric medicine 1994;10(4):589–609
  17. Cummings SR, Rubin SM, Black D. The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen. Clinical orthopaedics and related research 1990;252:163–6
  18. Cummings SR, Nevitt MC et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. The New England journal of medicine 1995;332(12):767–73
  19. Stevens JA, Ryan G, Kresnow M. Fatalities and Injuries From Falls Among Older Adults—United States, 1993-2003 and 2001-2005. Morbidity & Mortality Weekly Report 2006;55(45):1221–4
  20. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. The New England journal of medicine 1988;319(26):1701–7
  21. Bischoff-Ferrari HA, Willett WC et al (2005). Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA: The journal of the American Medical Association 2005;293(18):2257–64
  22. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin d levels and bone mineral density: a population-based study of younger and older adults. The American journal of medicine 2004;116(9):634–9
  23. Bischoff-Ferrari HA, Dietrich T et al (2004). Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged >=60 y. The American journal of clinical nutrition 2004;80(2):752–8
  24. Boland R. Role of vitamin D in skeletal muscle function. Endocrine reviews 1986;7(4):434–48
  25. Sørensen OH, Lund B et al. Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clinical science (London 1979) 1979;56(2):157–61
  26. Bischoff HA, Stähelin HB et al (2003). Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. Journal of bone and mineral research. The official journal of the American Society for Bone and Mineral Research 2003;18(2):343–51
  27. Bischoff-Ferrari HA, Dawson-Hughes B et al (2004). Effect of vitamin D on falls: a meta-analysis. JAMA: The journal of the American Medical Association 2004;291(16):1999–2006
  28. Graafmans WC, Ooms ME et al. Falls in the elderly: a prospective study of risk factors and risk profiles. American Journal of Epidemiology 1996;143(11):1129–36
  29. Bischoff-Ferrari HA, Dawson-Hughes B et al (2004). Effect of vitamin D on falls: a meta-analysis. JAMA: The journal of the American Medical Association 2004;291(16):1999–2006
  30. Wong YYE, McCaul AK et al (2013). Low Vitamin D Status Is an Independent Predictor of Increased Frailty and All-Cause Mortality in Older Men: The Health in Men Study. The Journal of Clinical Endocrinology & Metabolism, 98(9), 3821–3828. DOI: 10.1210/jc.2013-1702
  31. Zhou J, Huang P et al (2016). Association of vitamin D deficiency and frailty: A systematic review and meta-analysis. Maturitas, 94, 70–76. DOI: 10.1016/j.maturitas.2016.09.003
  32. Buchebner D, Bartosch P et al (2019). Association Between Vitamin D, Frailty, and Progression of Frailty in Community-Dwelling Older Women. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31287540
  33. Visser M, Lips P et al (2006). Low serum concentrations of 25-hydroxyvitamin D in older persons and the risk of nursing home admission. The American Journal of Clinical Nutrition, 84(3), 616–622. DOI: 10.1093/ajcn/84.3.616
  34. Kojima G, Tanabe M (2016). Frailty is Highly Prevalent and Associated with Vitamin D Deficiency in Male Nursing Home Residents. Journal of the American Geriatrics Society, 64(9). DOI: 10.1111/jgs.14268
  35. Samefors M, Östgren CJ et al (2014). Vitamin D deficiency in elderly people in Swedish nursing homes is associated with increased mortality. European Journal of Endocrinology, 170(5), 667–675. DOI: 10.1530/eje-13-0855
  36. Annweiler C, Schott AM et al (2010). Association of vitamin D deficiency with cognitive impairment in older women: Cross-sectional study. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19794127 (52)
  37. McCann JC, Ames BN (2008). Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18056830X
  38. Wilkins CH, Sheline YI et al (2006). Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17138809
  39. Oudshoorn C, Mattace-Raso FU et al. (n.d.). Higher serum vitamin D3 levels are associated with better cognitive test performance in patients with Alzheimer’s disease. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18503256
  40. Llewellyn DJ, Langa KM, Lang, IA (2009. Serum 25-hydroxyvitamin D concentration and cognitive impairment. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19073839
  41. Annweiler C, Llewellyn DJ, Beauchet O. (n.d.). Low serum vitamin D concentrations in Alzheimer’s disease: A systematic review and meta-analysis. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23042216
  42. Miller JW, Harvey D et al (2015). Vitamin D Status and Rates of Cognitive Decline in a Multiethnic Cohort of Older Adults. In: JAMA neurology 72 (11), S. 1295–1303. DOI: 10.1001/jamaneurol.2015.2115
  43. Wilkins CH, Sheline YI et al (2006). Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17138809
  44. Llewellyn DJ, Lang IA et al (2010). Vitamin D and risk of cognitive decline in elderly persons. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20625021
  45. Chaves M, Toral A et al (2014). (n.d.) Treatment with vitamin D and slowing of progression to severe stage of Alzheimer’s disease. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25153973
  46. Kuningas M, Mooijaart SP et al (2009). VDR gene variants associate with cognitive function and depressive symptoms in old age. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17714831
  47. Beydoun MA, Ding EL et al (2012). Vitamin D receptor and megalin gene polymorphisms and their associations with longitudinal cognitive change in US adults. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22170372
  48. Jia J, Zhang Y et al (2019). Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. Journal of Neurology, Neurosurgery & Psychiatry. DOI:10.1136/jnnp-2018-320199
  49. Annweiler C, Fantino B et al (2012). Vitamin D insufficiency and mild cognitive impairment: Cross-sectional association. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22339714
  50. Annweiler C, Beauchet O (2012). Serum Vitamin D Deficiency as a Predictor of Incident Non-Alzheimer Dementias: A 7-Year Longitudinal Study. Retrieved from https://www.karger.com/Article/Abstract/334944?id=pmid:6610841
  51. Annweiler C, Llewellyn DJ et al (2013). (n.d.). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23948884
  52. Littlejohns TJ, Annweiler C et al (2014). Vitamin D and the risk of dementia and Alzheimer disease. In: Neurology 83 (10), S. 920–928. DOI: 10.1212/WNL.0000000000000755
  53. Bredesen D, Amos E et al (2016). Reversal of cognitive decline in Alzheimer’s disease. Aging, 8(6), 1250-1258. DOI:10.18632/aging.100981
  54. Mark M. Alipio, Department of Radiologic Technology, College of Allied Health Sciences, Vitamin D supplementation could possibly improve clinical outcomes of patients infected with Coronavirus 2019 (Covid-2019), SSRN Electronic Journal 2020. DOI: 10.2139/ssrn.3571484

Titelbild: Free-Photos, www.pixabay.com

Kapitel 8 – Vitamin D-Mangel bei Haustieren

  1. Rosa C, Handel I et al (2019). Vitamin D status in dogs with babesiosis. Onderstepoort J Vet Res.2019 Mar 28;86(1):e1-e5. DOI: 10.4102/ojvr.v86i1.1644
  2. Sanchez-Cespedes R, Fernandez-Martinez MD et al (2018). Vitamin D-Receptor-Expression in der Brustdrüse von Hunden und Beziehung zu klinisch-pathologischen Parametern und Progesteron/Östrogen-Rezeptoren. Vet Comp Oncol. 2018 Mar;16(1):E185-E193. DOI:  10.1111/vco.12371. Epub 2017 Nov 27
  3. Young LR, Backus RC (2016). Orale Vitamin-D-Supplementierung mit dem Fünffachen der empfohlenen Menge wirkt sich geringfügig auf die Serum-25-Hydroxyvitamin-D-Konzentrationen bei Hunden aus. J. Nutri Sci 2016 Jul 29;5:e31. DOI: 10.1017/jns.2016.23. eCollection 2016
  4. Jaffey AJ, Backus RC et al (2018). Serum vitamin D concentrations in hospitalized critically ill dogs. PLOS ONE March 28, 2018 https://doi.org/10.1371/journal.pone.0194062

Titelbild: Hund – Jonathan Chiemsee2016, www.pixabay.com

Abb. 1: Katze – Jonathan Sautter, www.pixabay.com

Kapitel 9 – Wo sind die sinnvollsten Quellen für Vitamin D?

  1. Grant WB, Holick MF (2005). Benefits and requirements of vitamin D for optimal health: a review. Altern Med Rev. 2005 Jun;10(2):94-111. Alternative medicine review: a journal of clinical therapeutic 2005;10(2):94–111
  2. Veugelers P, Ekwaru J (2014). A Statistical Error in the Estimation of the Recommended Dietary Allowance for Vitamin D. Nutrients, 6(10), 4472–4475. DOI: 10.3390/nu6104472
  3. Heaney R, Cedric C et al (2015). Letter to Veugelers, P.J. and Ekwaru, J.P., A Statistical Error in the Estimation of the Recommended Dietary Allowance for Vitamin D. Nutrients 2014, 6, 4472–4475; DOI:10.3390/nu6104472. Retrieved from https://www.mdpi.com/2072-6643/7/3/1688
  4. Vieth R, Holick MF (2018). The IOM—Endocrine Society Controversy on Recommended Vitamin D Targets. Vitamin D, 1091–1107. DOI: 10.1016/b978-0-12-809965-0.00059-8
  5. Deutsche Gesellschaft für Ernährung (DGE): https://www.dge.de/wissenschaft/referenzwerte/vitamin-d/
  6. Vieth R, Bischoff-Ferrari H et al (2007). The urgent need to recommend an intake of vitamin D that is effective. The American journal of clinical nutrition 2007;85(3):649–50
  7. Reichrath J (2006). The challenge resulting from positive and negative effects of sunlight: How much solar UV exposure is appropriate to balance between risks of vitamin D deficiency and skin cancer? Progress in Biophysics and Molecular Biology 2006;92(1):9–16
  8. Lucas RM, McMichael AJ et al (2008). Estimating the global disease burden due to ultraviolet radiation exposure. International Journal of Epidemiology, 37(3), 654-667. DOI:10.1093/ije/dyn017
  9. Tanning As a Source Of Vitamin D.https://www.grassrootshealth.net/blog/tanning-source-vitamin-d/
  10. Holick MF (2002). Sunlight and vitamin D: both good for cardiovascular health. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1495109/
  11. Gandini S, Sera F et al (2005). Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. European Journal of Cancer, 41(1), 45–60. DOI: 10.1016/j.ejca.2004.10.016
  12. Gandini S, Montella M et al for CLINICAL NATIONAL MELANOMA REGISTRY GROUP (2016). Sun exposure and melanoma prognostic factors. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27073541
  13. Newton-Bishop JA, Beswick S et al (2009). Serum 25-Hydroxyvitamin D3 Levels Are Associated With Breslow Thickness at Presentation and Survival From Melanoma. Journal of Clinical Oncology, 27(32), 5439–5444. DOI: 10.1200/jco.2009.22.1135
  14. Muralidhar S, Newton-Bishop J et al (2019). Vitamin D–VDR Signaling Inhibits Wnt/β-Catenin–Mediated Melanoma Progression and Promotes Antitumor Immunity. Cancer Research, 79(23), 5986–5998. DOI: 10.1158/0008-5472.can-18-3927
  15. Reichrath J, Saternus R, Vogt T (2017). Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond. Molecular and Cellular Endocrinology, 453, 96–102. DOI: 10.1016/j.mce.2017.05.001
  16. Ince B, Yildirim MEC, Dadaci M (2019). Assessing the Effect of Vitamin D Replacement on Basal Cell Carcinoma Occurrence and Recurrence Rates in Patients with Vitamin D Deficiency. Hormones and Cancer, 10(4-6), 145–149. DOI: 10.1007/s12672-019-00365-2
  17. Vieth R (2006). Critique of the Considerations for Establishing the Tolerable Upper Intake Level for Vitamin D: Critical Need for Revision Upwards. The Journal of nutrition 2006;136(4):1117–22
  18. Hathcock JN, Shao A, Vieth R, Heaney R (2007). Risk assessment for vitamin D. The American journal of clinical nutrition 2007;85(1):6–18
  19. Hollis BW (2005). Circulating 25-Hydroxyvitamin D Levels Indicative of Vitamin D Sufficiency: Implications for Establishing a New Effective Dietary Intake Recommendation for Vitamin D. The Journal of Nutrition, 135(2), 317–322. DOI: 10.1093/jn/135.2.317
  20. Kimball SM, Vieth R et al (2007). Safety of vitamin D3 in adults with multiple sclerosis. In: The American journal of clinical nutrition 86 (3), S. 645–651
  21. McCullough PJ, Amend J (2017). Results of daily oral dosing with up to 60,000 international units (iu) of vitamin D3 for 2 to 6 years in 3 adult males. In: The Journal of steroid biochemistry and molecular biology 173, S. 308–312. DOI: 10.1016/j.jsbmb.2016.12.009
  22. McCullough PJ, Lehrer DS, Amend J (2019). Daily oral dosing of vitamin D3 using 5000 TO 50,000 international units a day in long-term hospitalized patients: Insights from a seven year experience. The Journal of Steroid Biochemistry and Molecular Biology, 189, 228–239. DOI: 10.1016/j.jsbmb.2018.12.010
  23. Garland CF, Baggerly LL et al (2011). Vitamin D supplement doses and serum 25-hydroxyvitamin D in the range associated with cancer prevention. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21378345
  24. Ekwaru JP, Holick MF et al (2014). The Importance of Body Weight for the Dose Response Relationship of Oral Vitamin D Supplementation and Serum 25-Hydroxyvitamin D in Healthy Volunteers. PLoS ONE, 9(11). DOI: 10.1371/journal.pone.0111265
  25. Shirvani A, Holick MF (2019). Disassociation of Vitamin D’s Calcemic Activity and Non-calcemic Genomic Activity and Individual Responsiveness: A Randomized Controlled Double-Blind Clinical Trial. Scientific Reports, 9(1). DOI: 10.1038/s41598-019-53864-1
  26. Prasse A (2016). The Diagnosis, Differential Diagnosis, and Treatment of Sarcoidosis. Deutsches Aerzteblatt Online. DOI:10.3238/arztebl.2016.0565
  27. Traub LM et al (2014). Impact of Vitamin D 3 Dietary Supplement Matrix on Clinical Response. Retrieved from https://academic.oup.com/jcem/article/99/8/2720/2537822
  28. Aglipay M, Birken CS et al (2017). Effect of High-Dose vs Standard-Dose Wintertime Vitamin D Supplementation on Viral Upper Respiratory Tract Infections in Young Healthy Children. Jama, 318(3), 245. DOI: 10.1001/jama.2017.8708
  29. Carlberg C, Haq A (2016). The concept of the personal vitamin D response index. In: The Journal of steroid biochemistry and molecular biology. DOI: 10.1016/j.jsbmb.2016.12.011
  30. Abdollahzadeh R, Fard MS et al (2016). Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis. A case-control study. In: Journal of the neurological sciences 367, S. 148–151. DOI: 10.1016/j.jns.2016.05.053
  31. Finamor DC, Sinigaglia-Coimbra R et al (2013). A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. In: Dermato-endocrinology 5 (1), S. 222–234. DOI: 10.4161/derm.24808

Titelbild: Daoudi Aissa, www.unsplash.com

Abb. 1: Zeichnung Peter Ruge, Copyright Akademie für menschliche Medizin

Unter folgendem QR-Code bzw. Webadresse können Sie die dminder-App von Ontometrics für Ihr Smartphone downloaden: http://dminder.ontometrics.com/

Kapitel 10 – Sonnenlicht wirkt über Vitamin D hinaus

  1. Slominski AT, Zmijewski MA et al (2018). How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology, 159(5), 1992-2007. DOI:10.1210/en.2017-03230
  2. Mead MN (2008). Benefits of Sunlight: A Bright Spot for Human Health. Environmental Health Perspectives, 116(4). DOI: 10.1289/ehp.116-a160
  3. Brainard GC, Sliney D et al (2008). Sensitivity of the human circadian system to short-wavelength (420-nm) light. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18838601
  4. Sherri M (2015). Seasonal Affective Disorder: An Overview of Assessment and Treatment Approaches. Retrieved from https://www.hindawi.com/journals/drt/2015/178564/ 
  5. Bhatti P, Buchanan DT et al (2016). Oxidative DNA damage during sleep periods among nightshift workers. Occupational and Environmental Medicine, 73(8), 537-544
  6. Bhatti P, Buchanan DT et al (2017). Oxidative DNA damage during night shift work. Occupational and Environmental Medicine, 74(9), 680-683
  7. https://www.aerzteblatt.de/nachrichten/69902/Warum-Nachtarbeit-das-Krebsrisiko-erhoeht
  8. Liu D, Fernandez BO et al (2014). UVA Irradiation of Human Skin Vasodilates Arterial Vasculature and Lowers Blood Pressure Independently of Nitric Oxide Synthase. Journal of Investigative Dermatology, 134(7), 1839-1846. DOI:10.1038/jid.2014.27
  9. Correale J, Farez MF (2013). Modulation of multiple sclerosis by sunlight exposure: Role of cis-urocanic acid. J Neuroimmunol 2013 Aug 15;261(1-2):134-40. DOI: 10.1016/j.jneuroim.2013.05.014
  10. Prakash S et al (2010). The prevalence of headache may be related with the latitude: a possible role of Vitamin D insufficiency?  Journal of Headache and Pain, 2010, 11(4), 301-7
  11. Taylor SL, Kaur M et al (2009). Pilot study of the effect of ultraviolet light on pain and mood in fibromyalgia syndrome. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19769472

Titelbild: Will van Wingerden, www.unsplash.com

Kapitel 11 – Mangel an Urkraft führt zum Natur-Defizit-Effekt

  1. Veröffentlicht von Alexander Kunst am 06.11.2019. Häufigkeit von Sport in Deutschland 2018. Retrieved from https://de.statista.com/statistik/daten/studie/158278/umfrage/haeufigkeit-von-sport-und-bewegung/
  2. Gesundheitsbericht des RKI aus dem Jahr 2015. https://www.rki.de/DE/Content/Gesundheitsmonitoring/Gesundheitsberichterstattung/GesInDtld/gesundheit_in_deutschland_2015.pdf?__blob=publicationFile
  3. http://www.gbe-bund.de/pdf/DEGS1_Koerperliche_Aktivitaet.pdf
  4. Pedersen L, Hojman P (2012). Muscle-to-organ cross talk mediated by myokines. In: Adipocyte 1 (3), S. 164–167. DOI: 10.4161/adip.20344
  5. Freiberger E, Sieber C, Pfeifer K (2011). Physical activity, exercise, and sarcopenia – future challenges. In: Wiener medizinische Wochenschrift (1946) 161 (17-18), S. 416–425. DOI: 10.1007/s10354-011-0001-z
  6. Ahmad T, Testani JM (2017). Physical Activity Prevents Obesity and Heart Failure. Now What Are We Going to Do About It? In: JACC. Heart failure 5 (5), S. 385–387. DOI: 10.1016/j.jchf.2017.03.006
  7. Lugo D, Pulido AL et al (2019). The effects of physical activity on cancer prevention, treatment and prognosis. A review of the literature. In: Complementary therapies in medicine 44, S. 9–13. DOI: 10.1016/j.ctim.2019.03.013
  8. Camandola S, Mattson MP (2017). Brain metabolism in health, aging, and neurodegeneration. In: The EMBO journal 36 (11), S. 1474–1492. DOI: 10.15252/embj.201695810
  9. Peter zu Eulenburg (2018). Weltraum: Das Gehirn verändert sich (Heute Journal). ZDF, 18.11.2018, zuletzt geprüft am 02.01.2020
  10. Pedersen BK, Saltin B (2015). Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. In: Scandinavian journal of medicine & science in sports 25 Suppl 3, S. 1–72. DOI: 10.1111/sms.12581
  11. Ames BN (2010). Optimal micronutrients delay mitochondrial decay and age-associated diseases. Mechanisms of Ageing and Development, 131(7-8), 473-479. DOI:10.1016/j.mad.2010.04.005
  12. Ames BN (2018). Prolonging healthy aging: Longevity vitamins and proteins. Proceedings of the National Academy of Sciences, 115(43), 10836-10844. DOI:10.1073/pnas.1809045115
  13. Krug S et al (2018). Sport- und Ernährungsverhalten bei Kindern und Jugendlichen in Deutschland – Querschnitt-Ergebnisse aus KiGGS Welle 2 und Trends. Retrieved June 01, 2020, from https://edoc.rki.de/handle/176904/5687?show=full
  14. Calder PC (2017). Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions, 45(5), 1105-1115. DOI:10.1042/bst20160474
  15. Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ (2019). Role of the microbiome in human development. Gut, 68(6), 1108-1114. DOI:10.1136/gutjnl-2018-317503
  16. Li X, Zhang Y et al (2020). Bidirectional Brain‐gut‐microbiota Axis in increased intestinal permeability induced by central nervous system injury. CNS Neuroscience & Therapeutics. DOI:10.1111/cns.13401
  17. Thomas Biegl: Glücklich singen. (n.d.). Retrieved June 01, 2020, from http://www.thomasbiegl.gmxhome.de/1Diplomarbeit.html
  18. Grape C, Sandgren M et al (2002). Does singing promote well-being?: An empirical study of professional and amateur singers during a singing lesson. Integrative Physiological & Behavioral Science, 38(1), 65-74. DOI:10.1007/bf02734261
  19. Thomas Blank, Karl Adamek: Singen in der Kindheit: Eine empirische Studie zur Gesundheit und Schulfähigkeit von Kindergartenkindern und das Canto elementar-Konzept zum Praxistransfer, ISBN 978-3830923749, Waxmann Verlag, Münster 2010
  20. Fukui H (2003). The Effects of Music and Visual Stress on Testosterone and Cortisol in Men and Women. Neuro endocrinology letters Jun-Aug 2003, 24(3-4):173-80
  21. Dobzhansky T (1973). Nothing in Biology Makes Sense Except in the Light of Evolution, American Biology Teacher, 35 (3): 125–129, JSTOR 4444260; reprinted in Zetterberg, J. Peter, ed. (1983), Evolution versus Creationism, Phoenix, Arizona: ORYX Press
  22. Yusuf S, Hawken S et al (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. The Lancet, 364(9438), 937-952. DOI:10.1016/s0140-6736(04)17018-9
  23. Ford et al (2009). Healthy Living Is the Best Revenge. Archives of Internal Medicine, 169(15), 1355. DOI:10.1001/archinternmed.2009.237
  24. Iddir M, Brito A et al (2020). Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients, 12(6), 1562. DOI:10.3390/nu12061562
  25. Akademie für menschl. Medizin: https://spitzen-praevention.com 

Deutschen Stiftung für Gesundheitsinformationen und Prävention: https://dsgip.de

Die SonnenAllianz: https://sonnenallianz.spitzen-praevention.com

Life-SMS: https://lifesms.blog

Kompetenz statt Demenz: https://kompetenz-statt-demenz.de

Die NährstoffAllianz: https://nährstoffallianz.de

Abb. 1: Peter Ruge, Copyright Akademie für menschliche Medizin

Abb. 2: Emde Grafik, Copyright Akademie für menschliche Medizin

Abb. 3: Peter Ruge, Copyright Akademie für menschliche Medizin

Abb. 4: PIRO4D, www.pixabay.com

Abb. 5: Peter Ruge, Copyright: Akademie für menschliche Medizin

Abb. 7: AU-Daten der DAK-Gesundheit 1997 – 2014

Abb. 8: Peter Ruge, Copyright: Akademie für menschliche Medizin

Abb. 9: Peter Ruge, Copyright: Akademie für menschliche Medizin

Abb. 10: Peter Ruge, Copyright Akademie für menschliche Medizin